首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article studies the problem of observer‐based dissipative control problem for wireless networked control systems (NCSs). The packet loss and time delay in the network are modeled by a set of switches, using that a discrete‐time switched system is formulated. First, results for the exponential dissipativity of discrete‐time switched system with time‐varying delays are proposed by using the average dwell time approach and multiple Lyapunov–Krasovskii function. Then, the results are extended to drive the controller design for considered wireless NCS. The attention is focused on designing an observer‐based state feedback controller which ensures that, for all network‐induced delay and packet loss, the resulting error system is exponentially stable and strictly dissipative. The sufficient conditions for existence of controllers are formulated in the form of linear matrix inequalities (LMIs), which can be easily solved using some standard numerical packages. Both observer and controller gains can be obtained by the solutions of set of LMIs. Finally, numerical examples are provided to illustrate the applicability and effectiveness of the proposed method. © 2014 Wiley Periodicals, Inc. Complexity 21: 297–308, 2015  相似文献   

2.
This article deals with the problem of nonfragile H output tracking control for a kind of singular Markovian jump systems with time‐varying delays, parameter uncertainties, network‐induced signal transmission delays, and data packet dropouts. The main objective is to design mode‐dependent state‐feedback controller under controller gain perturbations and bounded modes transition rates such that the output of the closed‐loop networked control system tracks the output of a given reference system with the required H output tracking performance. By constructing a more multiple stochastic Lyapunov–Krasovskii functional, the novel mode‐dependent and delay‐dependent conditions are obtained to guarantee the augmented output tracking closed‐loop system is not only stochastically admissible but also satisfies a prescribed H‐norm level for all signal transmission delays, data packet dropouts, and admissible uncertainties. Then, the desired state‐feedback controller parameters are determined by solving a set of strict linear matrix inequalities. A simple production system example and two numerical examples are used to verify the effectiveness and usefulness of the proposed methods. © 2015 Wiley Periodicals, Inc. Complexity 21: 396–411, 2016  相似文献   

3.
This article presents a state observer based iterative learning control to solve the trajectory tracking problem of a class of time‐varying Multi‐Input‐Multi‐Output nonlinear systems with arbitrary relative degree. For this purpose, an asymptotically stable observer is derived for the system under consideration. There after, this observer is integrated with the iterative learning controller by replacing the state in the control law with its estimation yielded by the state observer. Hence, the stability of the whole control (nonlinear system plus controller plus observer) is guaranteed. Simulation result on nonlinear system shows that the trajectory tracking error decreases through the iterations. © 2013 Wiley Periodicals, Inc. Complexity 19: 37–45, 2013  相似文献   

4.
In this paper, we consider stabilization of a 1‐dimensional wave equation with variable coefficient where non‐collocated boundary observation suffers from an arbitrary time delay. Since input and output are non‐collocated with each other, it is more complex to design the observer system. After showing well‐posedness of the open‐loop system, the observer and predictor systems are constructed to give the estimated state feedback controller. Different from the partial differential equation with constant coefficients, the variable coefficient causes mathematical difficulties of the stabilization problem. By the approach of Riesz basis property, it is shown that the closed‐loop system is stable exponentially. Numerical simulations demonstrate the effect of the stable controller. This paper is devoted to the wave equation with variable coefficients generalized of that with constant coefficients for delayed observation and non‐collocated control.  相似文献   

5.
This article investigates the problem of robust dissipative fault‐tolerant control for discrete‐time systems with actuator failures. Based on the Lyapunov technique and linear matrix inequality (LMI) approach, a set of delay‐dependent sufficient conditions is developed for achieving the required result. A design scheme for the state‐feedback reliable dissipative controller is established in terms LMIs which can guarantee the asymptotic stability and dissipativity of the resulting closed‐loop system with actuator failures. In addition, the proposed controller not only stabilize the fault‐free system but also to guarantee an acceptable performance of the faulty system. Also as special cases, robust H control, passivity control, and mixed H and passivity control with the prescribed performances under given constraints can be obtained for the considered systems. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed fault‐tolerant control technique. © 2016 Wiley Periodicals, Inc. Complexity 21: 579–592, 2016  相似文献   

6.
Connecting a spatially distributed system with sensors, actuators, and controllers as a networked control system by a shared data network can reduce the wiring and cost remarkably. Networked control strategy has been utilized in remote operation of linear systems. Nonlinearity is the major barrier in implementing a networked control scheme on an induction motor, which is the most widely used motor in industrial applications. In this case, we designed a sliding mode flux observer to linearize the induction motor model, such that the application of the networked control scheme is feasible. Due to the variable QoS, a fuzzy logic speed controller is proposed to adapt various network conditions. As part of the networked controller, a state predictor is designed to compensate the time delay in the feedback channel. In stability analysis, the upper bounds of time delays and packet dropouts are both given in terms of the Lyapunov theorem. Finally, simulations are conducted employing TrueTime toolbox to demonstrate the effectiveness of the control strategy.  相似文献   

7.
Self-triggered control is a recent design paradigm for resource-constrained networked control systems. By allocating aperiodic sampling instances for a digital control loop, a self-triggered controller is able to utilize network resources more efficiently than conventional sampled-data systems. In this paper we propose a self-triggered sampler for perturbed nonlinear systems ensuring uniformly ultimately boundedness of trajectories. Robustness and time delays are considered. To reduce conservativeness, a disturbance observer for the self-triggered sampler is proposed. The effectiveness of the proposed method is shown by simulation.  相似文献   

8.
研究一类模糊时滞系统的指数稳定和基于观测器的模糊控制问题.在系统状态未知的情况下,通过设计系统的模糊观测器利用矩阵不等式分析的方法给出了系统指数稳定条件和基于观测器的动态输出反馈控制器设计方案.仿真结果说明了所提方法的有效性.  相似文献   

9.
Nan Wang  Jinyong Yu  Weiyang Lin 《Complexity》2016,21(Z2):191-200
This article deals with the positioning control problem via the output feedback scheme for a linear actuator with nonlinear disturbances. In this study, the proposed controller accounts for not only the nonlinear friction, force ripple, and external disturbance but also the input saturation problem. In detail, the energy consumption for conquering friction and disturbance rejection is estimated and used as compensation based on the hybrid controller including and sliding‐mode‐based adaptive algorithms, which ensures the tracking performance and robustness of electromechanical servo system. Moreover, to confront the input saturation, a saturation observer and an anti‐windup controller are designed. The global robustness of the controller is guaranteed by an output feedback robust law. Theoretically, the designed controller can guarantee a favorable tracking performance in the presence of various disturbance forces and input saturation, which is essential for high accuracy motion plant in industrial application. The simulation results verify the robustness and effectiveness for the motion system with the proposed control strategy under various operation conditions. © 2016 Wiley Periodicals, Inc. Complexity 21: 191–200, 2016  相似文献   

10.
Zhen Liu  Cunchen Gao 《Complexity》2016,21(Z2):165-177
This article is devoted to designing linear sliding surface and adaptive sliding mode controller for a class of singular time‐delay systems with parametric uncertainties and external disturbance. In terms of linear matrix inequalities (LMIs), a sufficient criteria of H performance, and admissibility for considered sliding motion restricted to linear sliding surface is achieved, and the controller which guarantees the finite‐time reachability of the predesigned sliding surface is then developed, respectively. Finally, three examples show the effectiveness of the proposed result. © 2016 Wiley Periodicals, Inc. Complexity 21: 165–177, 2016  相似文献   

11.
This article examines the reliable L2 – L control design problem for a class of continuous‐time linear systems subject to external disturbances and mixed actuator failures via input delay approach. Also, due to the occurrence of nonlinear circumstances in the control input, a more generalized and practical actuator fault model containing both linear and nonlinear terms is constructed to the addressed control system. Our attention is focused on the design of the robust state feedback reliable sampled‐data controller that guarantees the robust asymptotic stability of the resulting closed‐loop system with an L2 – L prescribed performance level γ > 0, for all the possible actuator failure cases. For this purpose, by constructing an appropriate Lyapunov–Krasovskii functional (LKF) and utilizing few integral inequality techniques, some novel sufficient stabilization conditions in terms of linear matrix inequalities (LMIs) are established for the considered system. Moreover, the established stabilizability conditions pave the way for designing the robust reliable sampled‐data controller as the solution to a set of LMIs. Finally, as an example, a wheeled mobile robot trailer model is considered to illustrate the effectiveness of the proposed control design scheme. © 2016 Wiley Periodicals, Inc. Complexity 21: 309–319, 2016  相似文献   

12.
In this article, based on sampled‐data approach, a new robust state feedback reliable controller design for a class of Takagi–Sugeno fuzzy systems is presented. Different from the existing fault models for reliable controller, a novel generalized actuator fault model is proposed. In particular, the implemented fault model consists of both linear and nonlinear components. Consequently, by employing input‐delay approach, the sampled‐data system is equivalently transformed into a continuous‐time system with a variable time delay. The main objective is to design a suitable reliable sampled‐data state feedback controller guaranteeing the asymptotic stability of the resulting closed‐loop fuzzy system. For this purpose, using Lyapunov stability theory together with Wirtinger‐based double integral inequality, some new delay‐dependent stabilization conditions in terms of linear matrix inequalities are established to determine the underlying system's stability and to achieve the desired control performance. Finally, to show the advantages and effectiveness of the developed control method, numerical simulations are carried out on two practical models. © 2016 Wiley Periodicals, Inc. Complexity 21: 518–529, 2016  相似文献   

13.
In this paper, the boundary output feedback stabilization problem is addressed for a class of coupled nonlinear parabolic systems. An output feedback controller is presented by introducing a Luenberger‐type observer based on the measured outputs. To determine observer gains, a backstepping transform is introduced by choosing a suitable target system with nonlinearity. Furthermore, based on the state observer, a backstepping boundary control scheme is presented. With rigorous analysis, it is proved that the states of nonlinear closed‐loop system including state estimation and estimation error of plant system are locally exponentially stable in the L2norm. Finally, a numerical example is proposed to illustrate the effectiveness of the presented scheme.  相似文献   

14.
In this article, a control scheme combining radial basis function neural network and discrete sliding mode control method is proposed for robust tracking and model following of uncertain time‐delay systems with input nonlinearity. The proposed robust tracking controller guarantees the stability of overall closed‐loop system and achieves zero‐tracking error in the presence of input nonlinearity, time‐delays, time‐varying parameter uncertainties, and external disturbances. The salient features of the proposed controller include no requirement of a priori knowledge of the upper bound of uncertainties and the elimination of chattering phenomenon and reaching phase. Simulation results are presented to demonstrate the effectiveness of the proposed scheme. © 2015 Wiley Periodicals, Inc. Complexity 21: 194–201, 2016  相似文献   

15.
A new problem of adaptive type-2 fuzzy fractional control with pseudo-state observer for commensurate fractional order dynamic systems with dead-zone input nonlinearity is considered in presence of unmatched disturbances and model uncertainties; the control scheme is constructed by using the backstepping and adaptive technique. To avoid the complexity of backstepping design process, the dynamic surface control is used. Also, Interval type-2 Fuzzy logic systems (IT2FLS) are used to approximate the unknown nonlinear functions. By using the fractional adaptive backstepping, fractional control laws are constructed; this method is applied to a class of uncertain fractional-order nonlinear systems. In order to better control performance in reducing tracking error, the PSO algorithm is utilized for tuning the controller parameters. Stability of the system is proven by the Mittag–Leffler method. It is shown that the proposed controller guarantees the boundedness property for the system and also the tracking error can converge to a small neighborhood of the origin. The efficiency of the proposed method is illustrated with simulation examples.  相似文献   

16.
In this article, based on the stability theory of fractional‐order systems, chaos synchronization is achieved in the fractional‐order modified Van der Pol–Duffing system via a new linear control approach. A fractional backstepping controller is also designed to achieve chaos synchronization in the proposed system. Takagi‐Sugeno fuzzy models‐based are also presented to achieve chaos synchronization in the fractional‐order modified Van der Pol–Duffing system via linear control technique. Numerical simulations are used to verify the effectiveness of the synchronization schemes. © 2015 Wiley Periodicals, Inc. Complexity 21: 116–124, 2016  相似文献   

17.
This article investigates the problem of output tracking control for a class of discrete‐time interval type‐2 (IT2) fuzzy systems subject to mismatched premise variables. Based on the IT2 Takagi–Sugeno (T–S) fuzzy model, the criterion to design the desired controller is obtained, which guarantees the closed‐loop system to be asymptotically stable and satisfies the predefined cost function. Moreover, the controller to be designed does not need to share the same premise variables of the system, which enhances the flexibility of controller design and reduces the conservativeness. Finally, two examples are provided to demonstrate the effectiveness of the method proposed in this article. © 2015 Wiley Periodicals, Inc. Complexity 21: 265–276, 2016  相似文献   

18.
In this note, a reliable disturbance decoupled control system based on the geometrical technique is proposed. For this purpose, first, the conditions for nominal disturbance detection and rejection is introduced by using invariant subspaces. Then, the fragility issue of the controller/observer is addressed with appropriate H constraints in the form of some linear matrix inequalities (LMIs). In contrast to conventional pole placement method suitable for systems by neglecting sources of uncertainty, in the presented method, the disturbance rejection problem reduces to a quadratic stability problem. It is observed that the proposed method has a better attenuation performance than classical observer-based non-fragile controller. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this paper a class of linear time-varying control systems is considered. The time variation consists of a scalar time-varying coefficient multiplying the state matrix of an otherwise time-invariant system. Under very weak assumptions of this coefficient, we show that the controllability can be assessed by an algebraic rank condition, Kalman canonical decomposition is possible, and we give a method for designing a linear state-feedback controller and Luenberger observer.  相似文献   

20.
Aichuan Li  Bin Liu 《Complexity》2016,21(Z1):200-210
In this article, the nonfragile passivity and passification problems are investigated for a class of nonlinear singular networked control systems (NCSs) with network‐induced time‐varying delay. In particular, the randomly occurring controller gain fluctuation is taken into consideration by introducing the stochastic variable satisfying the Bernoulli random distribution. By constructing proper Lyapunov–Krasovskii function, delay‐dependent sufficient conditions are established to guarantee the passivity of the singular NCSs. Based on the derived results, the nonfragile passification controller is further designed in terms of linear matrix inequalities. Finally, a numerical example is provided to illustrate the applicability and effectiveness of our theoretical results. © 2015 Wiley Periodicals, Inc. Complexity 21: 200–210, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号