首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The influence of NH3-treating temperature on the visible light photocatalytic activity of N-doped P25-TiO2 as well as the relationship between the surface composition structure of TiO2 and its visible light photocatalytic activity were investigated. The results showed that N-doped P25-TiO2 treated at 600°C had the highest activity. The structure of P25-TiO2 was converted from anatase to rutile at 700°C. Moreover, no N-doping was detected at the surface of P25-TiO2. There was no simply linear relationship between the visible light photocatalytic activity and the concentration of doped nitrogen, and visible light absorption. The visible light photocatalytic activity of N-doped P25-TiO2 was mainly influenced by the synergistic action of the following factors: (i) the formation of the single-electron-trapped oxygen vacancies (denoted as Vo·); (ii) the doped nitrogen on the surface of TiO2; (iii) the anatase TiO2 structure.  相似文献   

2.
采用超声波辐射法制备了具有介孔结构的高浓度氮掺杂TiO2纳米晶(N/TiO2).采用N2物理吸附、X射线粉末衍射、X射线光电子能谱、透射电镜、光致发光谱和紫外-可见漫反射光谱等手段对N/TiO2进行了表征.以波长为400~660nm的可见光为光源,以水体污染物邻苯二甲酸二甲酯为降解对象,考察了不同制备方法对N/TiO2光催化性能的影响.结果表明,超声波辐射使氮掺杂浓度提高了2.2倍,该法制备的N/TiO2同时具有较好的介孔结构,表现了更高的光催化降解邻苯二甲酸二甲酯的活性.其活性提高的主要原因是N/TiO2含有更高浓度的氮和对可见光具有更强的吸收能力.  相似文献   

3.
TiO2 photocatalysts tri-doped with N, F and Fe were synthesized by a sol–gel method. The cooperation of N, F and Fe in tri-doped TiO2 was verified by monitoring NH3 decomposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet–visible (UV–Vis) absorption spectroscopy, and by the simulation based on the density functional theory (DFT). The results from NH3 decomposition revealed that the cooperation of N, F and Fe broadened the optical response of TiO2 to the visible light range and also enhanced the photocatalytic activity of TiO2 under UV light. The reusability of the tri-doped TiO2 sample after three cycles under UV and visible light irradiation was very good. XRD patterns and SEM and HRTEM images indicated that the tri-doped sample was nanometric anatase with a small amount of rutile with an average particle size of 18 nm. Tri-doping with N, F and Fe suppressed the phase transition from anatase to rutile and also resulted in some more lattice defects. XPS analysis showed that the N, F and Fe atoms were doped into the TiO2 lattice. UV–Vis absorption spectra of the tri-doped TiO2 showed that its optical absorption edge was moved up to 640 nm and its UV absorption was also enhanced. The DFT results confirmed that the cooperation of Fe 3d and N 2p orbits narrowed the band gap of TiO2 and the F 2p orbit broadened the upper valence bands. The synergistic electron density around N, F and Fe in tri-doped TiO2 was capable of enhancing the photochemical stability and reusability of TiO2.  相似文献   

4.
Graphite-like carbon deposited single-crystal anatase TiO2 with exposed {001} facets was fabricated through a two-step solvothermal process by using glucose as carbon source. The physicochemical properties of the as-prepared samples were investigated by X-ray diffraction, Brunauer-Emmett-Teller, transmission electron microscopy, Raman, UV–vis diffuse reflectance spectra, electrochemical impedance spectroscopy and surface photovoltage spectroscopy. These results demonstrated that graphite-like carbon layers were deposited on the surface of TiO2 single-crystal nanosheets with exposed highly reactive {001} facets via the dehydration of glucose during the process of hydrothermal treatment. The loading of the graphite-like carbon layers could effectively extend the light absorption edge of the single-crystal anatase TiO2 nanosheets to visible light region and accelerate the separation of photo-generated electrons and holes, contributing an excellent visible-light driven photocatalytic performance to the graphite-like carbon deposited single-crystal anatase TiO2 nanosheets for the degradation of methyl orange.  相似文献   

5.
Nanocrystalline TiO2 powders in the anatase, rutile, and mixed phases prepared by hydrolysis of TiCl4 solution were of ultrafine size (<7.2 nm) with high specific surface areas in the range 167 to 388 m2/g. In the photocatalytic degradation of phenol as model reaction, the photocatalytic properties of TiO2 nanoparticles were evaluated by use of UV–vis absorption spectroscopy and total organic carbon (TOC) content. The synthetic mixed-phase TiO2 powder calcined at 400 °C had higher activity than pure anatase or rutile; it degraded more than 90% phenol to CO2 (evaluated by TOC) after irradiation with near UV light for 90 min at a catalyst loading of 0.4 g/L. The TOC results indicated that rutile TiO2 crystallites of particle size 7.2 nm resulted in much better photocatalytic performance than particles of larger size. This result suggested that some intermediates, not determined by UV–vis absorption spectroscopy, existed in the solution after the photocatalytic process over the rutile TiO2 photocatalysts of larger crystallite size.  相似文献   

6.
以静电纺丝技术制备的TiO_2纳米纤维为基质和反应物,结合一步水热法制得Gd-N共掺杂SrTiO_3/TiO_2复合纳米纤维光催化剂。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电镜(HRTEM)、X射线光电子能谱(XPS)、紫外-可见漫反射(UV-Vis DRS)和荧光光谱(PL)等方法对其微观结构、形貌和光学性能进行表征。结果表明:SrTiO_3和TiO_2形成异质结能够使光生电子和空穴得到很好的分离,而Gd-N共掺杂产生新带隙,可以拓宽光谱响应范围至可见光区,并引起晶格缺陷,成为光生电子-空穴对的浅势捕获阱。Gd-N共掺杂与异质结的协同作用有效提高了SrTiO_3/TiO_2复合纳米纤维的可见光催化活性。  相似文献   

7.
A mesoporous iron–titanium mixed-oxides@activated carbon(AC) fiber membrane was fabricated by an electrospinning method and applied to the treatment of phenol waste water. The physical and chemical properties of the composite fiber membrane were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption, UV–Vis light diffuse reflectance spectroscopy (DRS), Raman spectroscopy, respectively. The results indicate that the composite nanofiber membrane is composed of α-Fe2O3, anatase TiO2 and activated carbon phases with a specific surface area of 231 m2 g–1 and narrow pore size distribution of 3–6 nm. DRS reveals that the composite membrane has high photons absorption from both ultraviolet light and visible light irradiation owing to the combination of Fe2O3, TiO2 and carbon. The prepared nano Fe2O3–TiO2@AC fiber membrane can act as an efficient reusable photocatalyst and adsorbent for 100% remo val of phenol pollutant. This hybrid technique is hopeful to be widely used in the treatment of various organic waste waters.  相似文献   

8.
Xiaohui Li 《Acta Physico》2008,24(11):2019-2024
N-F codoped TiO2 (TONF) photocatalysts were prepared using acid catalyzed hydrolysis method from mixed aqueous solution of TiCl4 and NH4F. The photocatalytic activity of the TONF was evaluated through the degradation of phenol under both visible and UV light irradiation. X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), scanning electron microscope (SEM), and N2 adsorption isotherm were used to characterize the obtained powders. The results showed that N-F codoped TiO2 exhibited significant improvement of visible light catalytic activity. N-F codoping could improve dispersion of TiO2, inhibit particle size agglomeration, and retard phase transformation. Doped N could extend the light response of TiO2 to visible light region. In addition, narrower band gap formed by F-doping was beneficial to the high visible light photocatalytic activity.  相似文献   

9.
ZnFe2O4 nanoparticles sensitized by C-modified TiO2 hybrids (ZnFe2O4–TiO2/C) were successfully prepared by a feasible method. The ZnFe2O4 nanoparticles were prepared by mechanical alloying and annealing. The residual organic compounds in the synthetic process of TiO2 were selected as the carbon source. The as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, X-ray fluorescence, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible light diffuse reflectance spectroscopy (UV–Vis) and N2 adsorption–desorption analysis. The photocatalytic activity of the photocatalysts was measured by degradation of methyl orange under ultraviolet (UV) light and simulated solar irradiation, respectively. The results show that the carbon did not enter the TiO2 lattice but adhered to the surface of TiO2. The photocatalytic activity of the as-prepared C-modified TiO2 (TiO2/C) improved both under UV and simulated solar light irradiation, but the improvement was not dramatic. Introduction of ZnFe2O4 into the TiO2/C could enhance the absorption spectrum range. The ZnFe2O4–TiO2/C hybrids exhibited a higher photocatalytic activity both than that of the pure TiO2 and TiO2/C under either UV or simulated solar light irradiation. The complex synergistic effect plays an important role in improving the photocatalytic performance of ZnFe2O4–TiO2/C composites. The optimum photocatalytic performance was obtained from the ZnFe2O4(0.8 wt%)–TiO2/C sample.  相似文献   

10.
N, B, Si-tridoped mesoporous TiO2, together with N-doped, N, B-codoped and N, Si-codoped TiO2, was prepared by a modified sol–gel method. The samples were characterized by wide-angle X-ray diffraction (WAXRD), N2 adsorption–desorption, transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, UV–visible adsorbance spectra (UV–vis) and X-ray photoelectron spectra (XPS). The N, B, Si-tridoped mesoporous TiO2 showed small crystallite size, large specific surface area (350 m2/g), uniform pore distribution (3.2 nm) and strong absorption in the visible light region. The photocatalytic activities of the samples were evaluated by the photodegradation of 2,4-dichlorophenol (2,4-DCP) aqueous solution. The N, B, Si-tridoping sample exhibited much higher photocatalytic activity compared with other synthesized photocatalysts. The high activity could be attributed to the strong absorption in the visible light region, large specific surface area, small crystallite size, large amount of surface hydroxyl groups, and mesoporosity.  相似文献   

11.
In the present work, we have fabricated a novel mesoporous TiO2–rGO nanocomposite by a facile one-step solvothermal method using titanic sulfate as the TiO2 source. The as-prepared composites were characterized by transmission electron microscopy, X-ray diffraction; UV–Vis diffuse reflectance spectra, X-ray photoelectron spectroscopy and photoluminence spectra. In situ nucleation and anchoring of TiO2 nanoparticles onto a graphene sheet is favorable fpr forming an intimate interfacial contact, and the chemically bonded TiO2–rGO nanocomposites commendably enhanced their photocatalytic activity in the photodegradation of rhodamine B and phenol. The high photocatalytic activity of the as-synthesized nanocomposites are primarily ascribed to the mesoporous structure, efficient charge transportation and separation with enhanced visible light absorption, which come from the appealing nanoarchitecture, for instance, ultra-dispersed and ultra-small TiO2 nanocrystals along with intimate and absolute interfacial contact between the TiO2 nanocrystals and the graphene sheet.  相似文献   

12.
Nanocrystalline Fe-doped TiO2 powders were prepared using TiOSO4, urea, and Fe(NO3)3 · 9H2O as precursors through a hydrothermal method. The as-synthesized yellowish-colored powders are composed of anatase TiO2, identified by X-ray diffraction (XRD). The grain size ranged from 9.7 to 12.1 nm, calculated by Scherrer’s method. The specific surface area ranged from 141 to 170 m2/g, obtained by the Brunauer–Emmett–Teller (BET) method. The transmission electron microscopy (TEM) micrograph of the sample shows that the diameter of the grains is uniformly distributed at about 10 nm, which is consistent with that calculated by Scherrer’s method. Fe3+ and Fe2+ have been detected on the surface of TiO2 powders by X-ray photoelectron spectroscopy (XPS). The UV–Vis diffuse reflection spectra indicate that the light absorption thresholds of the Fe-doped TiO2 powders have been red-shifted into the visible light region. The photocatalytic activity of the Fe-doped TiO2 was evaluated through the degradation of methylene blue (MB) under visible light irradiation. The Fe-doped TiO2 powders have shown good visible-light photocatalytic activities and the maximum degradation ratio is achieved within 4.5 h.  相似文献   

13.
Bare TiO2 and Cu-doped TiO2 nanoparticles with different nominal doping amounts of Cu ranging from of 0.5 to 5.0 mol% were synthesized using the modified sol–gel method. The samples were physically characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller-specific surface area, UV–Vis diffuse reflectance spectroscopy, zeta potential, X-ray photoelectron spectroscopy, inductively coupled plasma, and photoluminescence techniques. The Cu-doped TiO2 exhibited good photocatalytic activity in mineralization of oxalic acid and formic acid under visible light irradiation. Photomineralization of oxalic and formic acids under visible light irradiation revealed greatly enhanced photoactivity exhibited by the 2.0 mol% Cu-doped TiO2 photocatalyst compared to bare TiO2 . The enhanced photocatalytic performance arises from copper ion doping in the TiO2 structure, leading to an extended photoresponsive range, enhanced photogenerated charge separation, and transportation efficiency.  相似文献   

14.
A novel chlorine-doped titanium dioxide catalyst with visible light response was prepared by hydrolysis of tetrabutyl titanate in hydrochloric acid. The catalyst samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). Results showed that the doped element of Cl lowered the temperatures of phase transformation of TiO2 from amorphous to anatase and from anatase to rutile. The absorption edge of chlorine-doped TiO2 calcined at 300°C shifted to visible light region. X-ray photoelectron spectroscopy results proved that chlorine existed in the TiO2 crystal lattice as anion. The photocatalytic degradation of phenol showed that under visible light (λ > 400 nm) irradiation, the chlorine-doped TiO2 calcined at 300°C displayed the best performance, the degradation ratio of phenol was 42.5% after 120 min. Translated from Chinese Journal of Catalysis, 2006, 27(10): 890–894 [译自: 催化学报]  相似文献   

15.
We successfully prepared Ag quantum dots modified TiO2 microspheres by facile solvothermal and calcination method. The as-prepared Ag quantum dots/TiO2 microspheres were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The Ag quantum dots/TiO2 photocatalyst showed excellent visible light absorption and efficient photocatalytic activity for methyl orange degradation. And the sample with the molar ratio of 0.05 (Ag to Ti) showed the best visible light photocatalytic activity for methyl orange degradation, mainly because of the surface plasmon resonance (SPR) effects of Ag quantum dots to generate electron and hole pairs for enhanced visible light photocatalysis. Finally, possible visible light photocatalytic mechanism of Ag quantum dots/TiO2 microspheres for methyl orange degradation was proposed in detail.  相似文献   

16.
于新娈  王岩  孟祥江  杨建军 《催化学报》2013,34(7):1418-1428
在空气气氛和N2中热处理表面均匀分散有尿素和氯化钯的纳米管钛酸,制备了两个系列Pd/N共掺杂的TiO2光催化剂,并对所得样品进行了X射线衍射、透射电镜、X射线光电子能谱、紫外-可见漫反射光谱、荧光光谱和电子自旋共振等表征.结果表明,焙烧气氛对样品的形貌、晶体结构、光谱吸收、生成的氧空位浓度和可见光光催化性能的影响很大,其中在空气气氛中制备的样品光催化性能优于在N2中制备的样品.在可见光(λ≥420nm)照射下,以丙烯为模型污染物考察了样品的光催化活性,发现在空气中400℃下焙烧的样品具有最佳的可见光催化活性.另外,讨论了Pd/N共掺杂TiO2光催化剂具有可见光响应的机理,认为掺杂的Pd/N元素和制备过程中生成的氧空位是影响可见光催化性能的重要因素.  相似文献   

17.
The preparation of TiO2-coated polyester fabrics for purposes of photocatalytic water purification requires coating agents with crystalline TiO2 particles preferably in the anatase modification. The resulting coatings should exhibit a high water resistance and high photocatalytic activity according to reaction with structurally different dyestuffs. For this, the synthesis of anatase sols by hydrolysis of tetraisopropyltitanate in acidic medium under reflux was optimized. By precoating or addition of polymeric epoxysilanes a good adhesion on the polyester support could be realized. The photocatalytic activity was tested with different dyestuffs as: Methylene blue, Rhodamine B and the azo dyes AcidOrange 7 and C.I. Reactive red 158. The rate of photodestruction depends strongly on the type of used dye and its structure. Surprisingly, no differences in photodegradation were found in case of investigations with Rhodamine B, if the photoreaction is performed under exposure with UV or with visible light. A possible explanation of the similar behavior of photoreaction under different light sources could be a photodestruction by electron transfer from Rhodamine B to TiO2. Therefore, Rhodamine B seems to be generally not suitable for the evaluation of the photoactivity of TiO2 under irradiation with visible light.  相似文献   

18.
以四氯化钛为钛源,尿素为氮源,采用液相水解-沉淀法制得SiO2负载N掺杂TiO2可见光响应TiO2-xNy/SiO2光催化剂(TSN)。以苯酚为模型物,考察了TSN在可见光区、紫外光区及太阳光下的光催化活性,以及催化剂的使用寿命、分离性能。采用XPS、FTIR、UV-Vis DRS、XRD、TEM和低温氮物理吸附等对催化剂的结构进行表征。结果表明,N以阴离子形式进入TiO2体相并置换晶格中的O,适量N掺杂的TSN在紫外光区、可见光区及太阳光下均表现出较高的活性。SiO2与TiO2界面间有Ti-O-Si键形成,结合牢固。N掺杂在TiO2表面生成Ti-O-N键,形成新的能级结构,使催化剂的吸收红移至450~500 nm,诱发TiO2可见光催化活性。SiO2负载可减小TiO2颗粒平均尺寸,增加催化剂比表面积;同时SiO2负载还可改善催化剂的分离性能,提高催化剂使用寿命。  相似文献   

19.
(Fe, N) co-doped titanium dioxide powders have been prepared by a quick, low-temperature hydrothermal method using TiOSO4, CO(NH2)2, Fe(NO3)3, and CN3H5 · HCl as starting materials. The synthesized powders were characterized by XRD, TEM, BET, XPS, and UV–Vis spectroscopy. Experimental results show that the as-synthesized TiO2 powders are present as the anatase phase and that the N and Fe ions have been doped into the TiO2 lattice. The specific surface area of the powders is 167.8 m2/g by the BET method and the mean grain size is about 11 nm, calculated by Scherrer’s formula. UV–Vis absorption spectra show that the edge of the photon absorption has been red-shifted up to 605 nm. The doped titanium dioxide powders had excellent photocatalytic activity during the process of photo-degradation of formaldehyde and some TVOC gases under visible light irradiation.  相似文献   

20.
Manganese-carbon nanotubes (CNTs) on titania (TiO2) composites modified by different oxidants (KMnO4, (NH4)2S2O8 and m-chlorperbenzoic acid (MCPBA)) were prepared with a sol-gel method. These composites were comprehensively characterized by the Brunauer-Emett-Teller (BET) method, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy EDX, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis absorption spectroscopy. The photoactivity of these materials prepared under visible light irradiation was tested using methylene blue in aqueous solution. The result shown that among the three oxidants, the MCPBA was the best one for the surface functionalization of CNTs and the manganese treated CNT/TiO2 composite can enhance the photocatalytic activity. The proposed mechanism of the photodegradation of methylene blue on Mn-CNT/TiO2 composites was present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号