首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
The (306)VQIVYK(311) sequence in the tau peptide is essential for the formation of intracellular amyloid fibrils related to Alzheimer's disease, where it forms interdigitating cross-beta-structures. The inherent conformational preferences of the capped hexapeptide Ac-VQIVYK-NHMe were characterized in the gas phase. IR/UV double-resonance spectroscopy of the peptide isolated in a cold molecular beam was used to probe the conformation of the neutral peptide. The influence of protonation at the lysine side chain was investigated at 298 K by characterizing the protonated peptide ion, Ac-VQIVYK(H(+))-NHMe, with IRMPD spectroscopy in the fingerprint and amide I/II band region in an FTICR mass spectrometer. The conformations for both neutral and protonated peptides were predicted by an extensive conformational search procedure followed by cluster analysis and then DFT calculations. Comparison of the experimental and computed IR spectra, with consideration of the relative energies, was used to assign the dominant conformations observed. The neutral peptide adopts a beta-hairpin-like conformation with two loosely extended peptide chains, demonstrating the preference of the sequence for extended beta-strand-like structures. In the protonated peptide, the lysine NH3(+) disrupts this extended conformation by binding to the backbone and induces a transition to a random-coil-like structure.  相似文献   

3.
A series of AX and XA dipeptides in D2O have been investigated by FTIR, isotropic, and anisotropic Raman spectroscopy at acidic, neutral, and alkaline pD, to probe the influence of amino acid side chains on the amide I' band. We obtained a set of spectral parameters for each peptide, including intensities, wavenumbers, half-widths, and dipole moments, and found that these amide I' parameters are indeed dependent on the side chain. Side chains with similar characteristic properties were found to have similar effects on the amide I'. For example, dipeptides with aliphatic side chains were found to exhibit a downshift of the amide I' wavenumber, while those containing polar side chains experienced an increase in wavenumber. The N-terminal charge causes a substantial upshift of amide I', whereas the C-terminal charge causes a moderate decrease of the transition dipole moment. Density functional theory (DFT) calculations on the investigated dipeptides in vacuo yielded different correlations between theoretically and experimentally obtained wavenumbers for aliphatic/aromatic and polar/charged side chains, respectively. This might be indicative of a role of the hydration shell in transferring side chain-backbone interactions. For Raman bands, we found a correlation between amide I' depolarization ratio and wavenumber which reflects that some side chains (valine, histidine) have a significant influence on the Raman tensor. Altogether, the obtained data are of utmost importance for utilizing amide I as a tool for secondary structure analysis of polypeptides and proteins and providing an experimental basis for theoretical modeling of this important backbone mode. This is demonstrated by a rather accurate modeling for the amide I' band profiles of the IR, isotropic Raman, and anisotropic Raman spectra of the beta-amyloid fragment Abeta(1-82).  相似文献   

4.
We have measured the band profile of amide I in the infrared, isotropic, and anisotropic Raman spectra of L-alanyl-D-alanyl-L-alanine, acetyl-L-alanyl-L-alanine, L-vanyl-L-vanyl-L-valine, L-seryl-L-seryl-L-serine, and L-lysyl-L-lysyl-L-lysine at acid, neutral, and alkaline pD. The respective intensity ratios of the two amide I bands depend on the excitonic coupling between the amide I modes of the peptide group. These intensity ratios were obtained from a self-consistent spectral decomposition and then were used to determine the dihedral angles between the two peptide groups by means of a recently developed algorithm (Schweitzer-Stenner, R. Biophys. J. 2002, 83, 523-532). The validity of the obtained structures were checked by measuring and analyzing the vibrational circular dichroism of the two amide I bands. Thus, we found two solutions for all protonation states of trialanine. Assuming a single conformer, one obtains a very extended beta-helix-like structure. Alternatively, the data can be explained by the coexistence of a 3(1)(PII) and a beta-sheet-like structure. Acetyl-L-alanyl-L-alanine exhibits a structure which is very similar to that obtained for trialanine. The tripeptide with the central D-alanine adopts an extended structure with a negative psi and a positive phi angle. Trivaline and triserine adopt single beta(2)-like structures such as that identified in the energy landscape of the alanine dipeptide. Trilysine appears different from the other investigated homopeptides in that it adopts a left-handed helix which at acid pD is in part stabilized by hydrogen bonding between the protonated carboxylate (donor) and the N-terminal peptide carbonyl. Our result provides compelling evidence for the capability of short peptides to adopt stable structures in an aqueous solution, which at least to some extent reflect the intrinsic structural propensity of the respective amino acids in proteins. Furthermore, this paper convincingly demonstrates that the combination of different vibrational spectroscopies provides a powerful tool for the determination of the secondary structure of peptides in solution.  相似文献   

5.
The conformational preferences of enkephalins and the related glycoconjugates in which free or protected carbohydrate moieties were linked to the opioid peptides through an ether, ester or amide bond were investigated by circular dichroism spectroscopy in water, trifluoroethanol and water-trifluoroethanol mixtures. The analysis of the spectra revealed that the conformation of the enkephalin molecule is very sensitive to slight changes in the peptide structure around the C-terminal region. It was found that the type II beta-turn structures are populated in N-terminal tetrapeptide enkephalin fragment, while leucine-enkephalin amide feature a type I (III) beta-turn structure in solution. Incorporation of the sugar moiety into opioid peptide compound did not significantly influence the overall conformation of the peptide backbone, although minor intensity changes may reflect shifts in the population of the different turn systems. These small structural alterations can be responsible for the receptor-subtype selectivity of the various carbohydrate-modified enkephalin analogs.  相似文献   

6.
Charge transfer (CT) transitions between the C-terminal carboxylate and peptide group have been investigated for alanyl-X and X-alanine dipeptides by far-UV absorption and electronic circular dichroism (ECD) spectroscopy (where X represents different amino acid residues). The spectra used in the present study were obtained by subtracting the spectrum of the cationic species from that of the corresponding zwitterionic peptide spectrum. These spectra displayed three bands, e.g., band I between 44 and 50 kK (kK = 10(3) cm(-1)), band II at 53 kK, and band III above 55 kK, which were, respectively, assigned to a n(COO-) --> pi* CT transition, a pi(COO-) --> pi* CT transition, and a carboxylate pi --> pi* (NV1) transition, respectively By comparison of the intensity, bandwidth, and wavenumber position of band I of some of the investigated dipeptides, we found that positive charges on the N-terminal side chain (for X = K), and to a minor extent also the N-terminal proton, reduce its intensity. This can be understood in terms of attractive Coulomb interactions that stabilize the ground state over the charge transfer state. For alanylphenylalanine, we assigned band I to a n(COO-) --> pi* CT transition into the aromatic side chain, indicating that aromatic side chains interact electronically with the backbone. We also performed ECD measurements at different pH values (pH 1-6) for a selected subset of XA and AX peptides. By subtraction of the pH 1 spectrum from that observed at pH 6, the ECD spectrum of the CT transition was obtained. A titration curve of their spectra reveals a substantial dependence on the protonation state of the aspartic acid side chain of AD, which is absent in DA and AE. This most likely reflects a conformational transition of the C-terminus into a less extended state, though the involvement of a side chain --> peptide CT transition cannot be completely ruled out.  相似文献   

7.
The solution structure and the local solvation environments of alanine dipeptide (AD, 1 a) and its isotopomer (AD*, 1 b, 13C on the acetyl end C==O) are studied by using infrared (IR) spectroscopy and vibrational circular dichroism (VCD). From the amide I IR spectra of AD* in various protic solvents, it is found that each of the two carbonyl groups is fully H-bonded to two water molecules. However, the number of alcohol molecules H-bonded to each C==O varies from one to two, and the local solvation environments are asymmetric around the two peptides of AD* in alcohol solutions. The amide I VCD spectra of AD and AD* in D2O are also measured, and a series of density functional theory (DFT, B3LYP/6-311++G**) calculations are performed to obtain the amide I normal-mode rotational strengths of AD and the intrinsic rotational strengths of its two peptide fragments. By combining the VCD-measurement and DFT-calculation results and employing a coupled oscillator theory, we show that the aqueous-solution structure of the dipeptide can be determined. We believe that the present method will be of use in building up a library of dipeptide solution structures in water.  相似文献   

8.
The ionization effects on 28 conformations of N-glycylglycine are analyzed by means of the hybrid B3LYP and the hybrid meta-MPWB1K density functionals and by single-point calculations at the CCSD(T) level of theory. The most favorable process observed corresponds to the ionization of the only neutral conformation that presents a OH...NH2 intramolecular hydrogen bond, which leads to CO2 elimination after a spontaneous proton transfer from -COOH to NH2. The remaining neutral structures evolve to 20 different conformations of N-glycylglycine radical cation, which lie about 25-40 kcal/mol higher than the decarboxylated [NH3CH2CONHCH2]+*...[CO2] complex. Structural changes induced by ionization depend on the intramolecular hydrogen bonds of the initial conformation, since they determine the nature of the electron hole formed. In most cases, ionization takes place at the terminal -NH2 and -CO of the amide bond, which produces a strengthening of the peptide bond and the formation of new -NH2...OC(amide) and -NH2...OCOH hydrogen bonds. However, if -NH2 and -CO(amide) simultaneously act as proton acceptor in the neutral conformation, ionization is mainly localized at the carboxylic group, which produces a strengthening of the -COOH...OC(amide) bond. Both functionals lead to similar trends and compare well with CCSD(T) results except for a few cases for which B3LYP provides a too delocalized picture of the electron hole and consequently leads to artificial geometry reorganization.  相似文献   

9.
Alanine dipeptide analog 1 backbone-caged with a photolabile linker, 4,5-dimethoxy-2-nitrobenzyl (DmNb), was synthesized. UV-pulse-induced photochemical reaction of 1 was monitored by Fourier transform IR absorption spectroscopy under a steady-state condition or in a fast-scan mode. Upon photolysis of 1, the amide I band is changed from a doublet to a singlet with concomitant line shape changes of several IR bands. The change of the amide I band is directly associated with the photocleavage of the covalent N-C bond connecting the backbone amide of 2 to DmNb. Therefore, IR spectroscopy is useful for directly probing the photocleavage of backbone-caged peptide 1 and the concurrent release of native peptide 2. In contrast, UV-vis spectroscopy probing the irradiation-induced structural change of the 2-nitrobenzyl moiety itself may not provide a clue directly relevant to the photocleavage of such N-C bond. Time-resolved IR spectra recorded in a fast-scan mode after pulsed UV irradiation of 1 reveal that such photocleavage occurs at least faster than a few seconds of our instrumental time resolution.  相似文献   

10.
Amide I infrared (IR) spectral features are studied, by using the density functional theoretical method, for two untypical (but possibly rather prevalent) structures inspired from those recently suggested for amyloids: a structure consisting of loop regions in the (alpha L, alpha R) conformation stacked to form an alpha-sheet, and a structure involving some main-chain peptide groups (of any residues) and some side-chain amide groups of glutamine and asparagine residues closely located with each other. The amide I vibrational (off-diagonal) coupling constants are examined by extracting them from the calculated Cartesian-based force constants with the average partial vector method and by comparing them with those estimated on the basis of the transition dipole coupling mechanism. It is suggested that the amide I IR band characteristic of the alpha-sheet conformation in dry environment (without hydrogen bonding to solvent water molecules) is located in a high-frequency region (approximately >1670 cm(-1), somewhat higher than that of alpha-helix), because of the dependence of the diagonal (uncoupled) frequency and the off-diagonal coupling constant on the Phi and Psi dihedral angles. It is also shown that the amide I vibrations of the closely located peptide and amide groups are strongly coupled through-space with each other, and in the presence of this type of strong vibrational coupling, a noticeable change in the IR intensity upon (13)C=O substitution may occur even for a mode that arises mainly from an unsubstituted group and is not much shifted in frequency. The meaning of these results in the interpretation of observed amide I spectral profiles, especially the possible usefulness of IR spectroscopic measurements for detecting those untypical structures in the process of amyloid formation, is also discussed.  相似文献   

11.
In this report, spectral simulations and isotope labeling are used to describe the two-dimensional IR spectroscopy of beta-hairpin peptides in the amide I spectral region. 2D IR spectra of Gramicidin S, PG12, Trpzip2 (TZ2), and TZ2-T3(*)T10(*), a dual (13)C(') isotope label, are qualitatively described by a model based on the widely used local mode amide I Hamiltonian. The authors' model includes methods for calculating site energies for individual amide oscillators on the basis of hydrogen bonding, nearest neighbor and long-range coupling between sites, and disorder in the site energy. The dependence of the spectral features on the peptide backbone structure is described using disorder-averaged eigenstates, which are visualized by mapping back onto the local amide I sites. beta-hairpin IR spectra are dominated by delocalized vibrations that vary by the phase of adjacent oscillators parallel and perpendicular to the strands. The dominant nu(perpendicular) band is sensitive to the length of the hairpin and the amount of twisting in the backbone structure, while the nu(parallel) band is composed of several low symmetry modes that delocalize along the strands. The spectra of TZ2-T3(*)T10(*) are used to compare coupling models, from which we conclude that transition charge coupling is superior to transition dipole coupling for amide groups directly hydrogen bound across the beta strands. The 2D IR spectra of TZ2-T3(*)T10(*) are used to resolve the redshifted amide I band and extract the site energy of the labeled groups. This allows the authors to compare several methods for calculating the site energies used in excitonic treatments of the amide I band. Gramicidin S is studied in dimethyl sulfoxide to test the role of solvent on the spectral simulations.  相似文献   

12.
Electronic absorption and synchrotron radiation circular dichroism (SRCD) spectra of the anionic, cationic, and zwitterionic forms of L-alanyl-L-alanine (AA) in aqueous solutions were measured and interpreted by molecular dynamics (MD) and ab initio computations. Time-dependent density functional theory (TD DFT) was applied to predict the electronic excited states. The modeling enabled the assessment of the role of molecular conformation, charge, and interaction with the polar environment in the formation of the spectral shapes. Particularly, inclusion of explicit solvent molecules in the computations appeared to be imperative because of the participation of water orbitals in the amide electronic structure. Implicit dielectric continuum solvent models gave inferior results for clusters, especially at low-energy transitions. Because of the dispersion of transition energies, tens of water/AA clusters had to be averaged in order to obtain reasonable spectral shapes with a more realistic inhomogeneous broadening. The modeling explained most of the observed differences, as the anionic and zwitterionic SRCD spectra were similar and significantly different from the cationic spectrum. The greatest deviation between the experimental and theoretical curves observed for the lowest-energy negative anion signal can be explained by the limited precision of the TD DFT method, but also by the complex dynamics of the amine group. The results also indicate that differences in the experimental spectral shapes do not directly correlate with the peptide main-chain conformation. Future peptide and protein conformational studies based on circular dichroic spectroscopy can be reliable only if such effects of molecular dynamics, solvent structure, and polar solvent-solute interactions are taken into account.  相似文献   

13.
Determination of the precise solution structure of peptides is of utmost importance to the understanding of protein folding and peptide drugs. Herein, we have measured the UV circular dichroism (UVCD) spectra of tri-alanine dissolved in D(2)O, H(2)O, and glycerol. The results clearly show the coexistence of a polyproline II or 3(1)-helix and a somewhat disordered flat beta-strand conformation, in complete agreement with recent predictions from spectroscopic data (Eker et al. J. Am. Chem. Soc. 2002, 124, 14 330-14 341). A thermodynamic analysis revealed that enthalpic contributions of about 11 and 17 kJ/mol stabilize polyproline II in D(2)O and H(2)O, respectively, but at room temperature they are counterbalanced by entropic contributions, which clearly favor the more disordered beta-strand conformation. It is hypothesized that this delicate balance is the reason for the variety of structural propensities of amino acid residues in the absence of nonlocal interactions. The isotope effect yielding a higher occupation of polyproline II in H(2)O with respect to D(2)O strongly suggests that a hydrogen-bonding network involving the peptide and water molecules in the hydration shell plays a major role in stabilizing this conformation. The equilibrium between polyproline II and beta-strand is practically maintained in glycerol, which suggests that glycerol can substitute water as stabilizing solvent for the polyproline II conformation. We also measured the UVCD spectra of tri-valine and tri-lysine (both at acidic pD) in D(2)O and found them to adopt a flat beta-strand and left-handed turn structure, respectively, in accordance with recent analyses of vibrational spectroscopy data. Generally, the present study adds substantial evidence to the notion that the so-called random coil state of peptides is much more structured than generally assumed.  相似文献   

14.
Replacement of the alpha-proton of an alanine residue to generate alpha-aminoisobutyric acid (Aib) in alanine-based oligopeptides favors the formation of a 3(10) helix when the length of the oligopeptide is about four to six residues. This research was aimed at experimentally identifying the structural impact of an individual Aib residue in an alanine context of short peptides in water and Aib's influence on the conformation of nearest-neighbor residues. The amide I band profile of the IR, isotropic and anisotropic Raman, and vibrational circular dichroism (VCD) spectra of Ac-Ala-Ala-Aib-OMe, Ac-Ala-Aib-Ala-OMe, and Ac-Aib-Ala-Ala-OMe were measured and analyzed in terms of different structural models by utilizing an algorithm that exploits the excitonic coupling between amide I' modes. The conformational search was guided by the respective 1H NMR and electronic circular dichroism spectra of the respective peptides, which were also recorded. From these analyses, all peptides adopted multiple conformations. Aib predominantly sampled the right-handed and left-handed 3(10)-helix region and to a minor extent the bridge region between the polyproline (PPII) and the helical regions of the Ramachandran plot. Generally, alanine showed the anticipated PPII propensity, but its conformational equilibrium was shifted towards helical conformations in Ac-Aib-Ala-Ala-OMe, indicating that Aib can induce helical conformations of neighboring residues positioned towards the C-terminal direction of the peptide. An energy landscape exploration by molecular dynamics simulations corroborated the results of the spectroscopic studies. They also revealed the dynamics and pathways of potential conformational transitions of the corresponding Aib residues.  相似文献   

15.
Reverse micelles formed by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in isooctane (IO) and water have long been used as a means to provide a confined aqueous environment for various applications. In particular, AOT reverse micelles have often been used as a template to mimic membrane-water interfaces. While earlier studies have shown that membrane-binding peptides can indeed be incorporated into the polar cavity of AOT reverse micelles where they mostly fold into an alpha-helical structure, the underlying interactions leading to the ordered conformation are however not well understood. Herein, we have used circular dichroism (CD) and infrared (IR) spectroscopies in conjunction with a local IR marker (i.e., the CN group of a non-natural amino acid, p-cyano-phenylalanine) and a global IR reporter (i.e., the amide I' band of the peptide backbone) to probe the conformation as well as the hydration status of an antimicrobial peptide, mastoparan x (MPx), in AOT reverse micelles of different water contents. Our results show that at, w0=6, MPx adopts an alpha-helical conformation with both the backbone and hydrophobic side chains mostly dehydrated, whereas its backbone becomes partially hydrated at w0=20. In addition, our results suggest that the amphipathic alpha-helix so formed orients itself in such a manner that its positively charged, lysine-rich, hydrophilic face points toward the negatively charged AOT head groups, while its hydrophobic face is directed toward the polar interior of the water pool. This picture is in marked contrast to that observed for the binding of MPx to phospholipid bilayers wherein the hydrophobic surface of the bound alpha-helix is buried deeper into the membrane interior.  相似文献   

16.
Chen Han  Jianping Wang 《Chemphyschem》2012,13(6):1522-1534
In this work, a non‐natural amino acid, H‐propargylglycine‐OH (Pra), is chosen to examine the side‐chain effect on the backbone conformation of small peptides. The conformations of two synthesized Pra‐containing tripeptides, Ac‐Pra‐Pra‐NH2 (PPTP) and Ac‐Pra‐Ala‐NH2 (PATP), are examined by infrared (IR) spectroscopy in combination with molecular dynamics (MD) simulations and quantum chemical computations. By analyzing the joint distributions of backbone torsional angles, several significant conformations can be identified for the two tripeptides solvated in D2O. At room temperature, 44 % of PPTP exists in the α‐α conformation and 33 % of PATP exists in the α‐polyproline‐II conformation. Larger structural inhomogeneity is seen in both cases by MD simulations at elevated temperatures. Thus even a small side chain, such as the propargyl group can significantly alter the peptide backbone conformations. The results suggest that there is no overwhelming conformational propensity of the Pra residue in short peptides. IR spectra simulated in the amide‐I region using two different methods, reasonably reproduce the experimental IR spectra and their temperature dependence.  相似文献   

17.
Heterodyned two-dimensional infrared (2D IR) spectroscopy has been used to study the amide I vibrational dynamics of a 27-residue peptide in lipid vesicles that encompasses the transmembrane domain of the T-cell receptor CD3zeta. Using 1-(13)C[Double Bond](18)O isotope labeling, the amide I mode of the 49-Leucine residue was spectroscopically isolated and the homogeneous and inhomogeneous linewidths of this mode were measured by fitting the 2D IR spectrum collected with a photon echo pulse sequence. The pure dephasing and inhomogeneous linewidths are 2 and 32 cm(-1), respectively. The population relaxation time of the amide I band was measured with a transient grating, and it contributes 9 cm(-1) to the linewidth. Comparison of the 49-Leucine amide I mode and the amide I band of the entire CD3zeta peptide reveals that the vibrational dynamics are not uniform along the length of the peptide. Possible origins for the large amount of inhomogeneity present at the 49-Leucine site are discussed.  相似文献   

18.
We present results of a theoretical analysis of the phosphorylation reaction in cAMP-dependent protein kinase using a combined quantum mechanical and molecular mechanics (QM/MM) approach. Detailed analysis of the reaction pathway is provided using a novel QM/MM implementation of the nudged elastic band method, finite temperature fluctuations of the protein environment are taken into account using free energy calculations, and an analysis of hydrogen bond interactions is performed on the basis of calculated frequency shifts. The late transfer of the substrate proton to the conserved aspartate (D166), the activation free energy of 15 kcal/mol, and the slight exothermic (-3 kcal/mol) character of the reaction are all consistent with the experimental data. The near attack conformation of D166 in the reactant state is maintained by interactions with threonine-201, asparagine-177, and most notably by a conserved water molecule serving as a strong structural link between the primary metal ion and the D166. The secondary Mg ion acts as a Lewis acid, attacking the beta-gamma bridging oxygen of ATP. This interaction, along with a strong hydrogen bond between the D166 and the substrate, contributes to the stabilization of the transition state. Lys-168 maintains a hydrogen bond to a transferring phosphoryl group throughout a reaction process. This interaction increases in the product state and contributes to its stabilization.  相似文献   

19.
We determine the shift and line shape of the amide I band of a model AK peptide from molecular dynamics (MD) simulations of the peptide dissolved in methanol/water mixtures with varying composition. The IR spectra are determined from a transition dipole coupling exciton model. A simplified empirical model Hamiltonian is employed, which takes into account both the effect of hydrogen bonding and the intramolecular vibrational coupling. We consider a single isolated AK peptide in a mostly helical conformation, while the solvent is represented by 2600 methanol or water molecules, simulated for a pressure of 1 bar and a temperature of 300 K. Over the course of the simulations, minor reversible conformational changes at the termini are observed, which are found to only slightly affect the calculated spectral properties. Over the entire composition range, which varies from pure water to the pure methanol solvent, a monotonous shift towards higher frequency of the IR amide I band of about 8 wavenumbers is observed. This shift towards higher frequency is comparable to the shift found in preliminary experimental data also presented here on the amide I′ band. The shift is found to be caused by two counter‐compensating effects. An intramolecular red shift of about 1.2 wavenumbers occurs, due to stronger intramolecular hydrogen bonding in a methanol‐rich environment. Dominating, however, is the intermolecular solvent‐dependent shift towards higher frequency of about 10 wavenumbers, which is attributed to the less effective hydrogen‐bond‐donor capabilities of methanol compared to water. The importance of the solvent contribution to the IR shift, as well as the significantly different hydrogen formation capabilities of water and methanol, makes the amide I band sensitive to composition changes in the local environment close to the peptide/solvent interface. This allows, in principle, an experimental determination of the composition of the solvent in close proximity to the peptide surface. For the AK peptide case, we observe at low methanol concentrations a significantly enhanced methanol concentration at the peptide/solvent interface, supposedly promoted by the partially hydrophobic character of the AK peptide’s solvent‐accessible surface.  相似文献   

20.
We examined the 204-nm UV resonance Raman (UVR) spectra of the polyproline II (PPII) and alpha-helical states of a 21-residue mainly alanine peptide (AP) in different H2O/D2O mixtures. Our hypothesis is that if the amide backbone vibrations are coupled, then partial deuteration of the amide N will perturb the amide frequencies and Raman cross sections since the coupling will be interrupted; the spectra of the partially deuterated derivatives will not simply be the sum of the fully protonated and deuterated peptides. We find that the UVR spectra of the AmIII and AmII' bands of both the PPII conformation and the alpha-helical conformation (and also the PPII AmI, AmI', and AmII bands) can be exactly modeled as the linear sum of the fully N-H protonated and N-D deuterated peptides. Negligible coupling occurs for these vibrations between adjacent peptide bonds. Thus, we conclude that these peptide bond Raman bands can be considered as being independently Raman scattered by the individual peptide bonds. This dramatically simplifies the use of these vibrational bands in IR and Raman studies of peptide and protein structure. In contrast, the AmI and AmI' bands of the alpha-helical conformation cannot be well modeled as a linear sum of the fully N-H protonated and N-D deuterated derivatives. These bands show evidence of coupling between adjacent peptide bond vibrations. Care must be taken in utilizing the AmI and AmI' bands for monitoring alpha-helical conformations since these bands are likely to change as the alpha-helical length changes and the backbone conformation is perturbed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号