首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Structural relaxation of scintillating Ce-doped Na–Gd phosphate glass with a nominal composition of Ce:NaGd(PO3)4 was experimentally studied using non-isothermal thermo-mechanical analysis, and the relaxation process was described by the Tool–Narayanaswamy–Mazurin model. The distribution of relaxation times was expressed by the empirical Kohlrausch–Williams–Watts relaxation function with relaxation time directly proportional to dynamic viscosity. The model parameters and material constants were obtained by the nonlinear regression analysis of thermo-mechanical data. It has been concluded that the model used of structural relaxation correctly describes relaxation processes in studied Ce-doped NaGd(PO3)4 glass.  相似文献   

2.
Lithium aluminum silicate (LAS) glasses of compositions (wt%) 10.6Li2O–71.7SiO2–7.1Al2O3–4.9K2O–3.2B2O3–1.25P2O5–1.25TiO2 were prepared by the melt quench technique. Crystallization kinetics was investigated by the method of Kissinger and Augis–Bennett using differential thermal analysis (DTA). Based on the DTA data, glass ceramics were prepared by single-, two-, and three-step heat treatment schedules. The interdependence of different phases formed, microstructure, thermal expansion coefficient (TEC) and microhardness (MH) was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermo-mechanical analysis (TMA), and microhardness (MH) measurements. Crystallization kinetics revealed that Li2SiO3 is the kinetically favored phase with activation energy of 91.10 kJ/mol. An Avrami exponent of n = 3.33 indicated the dominance of bulk crystallization. Based upon the formation of phases, it was observed that the two-stage heat treatment results in highest TEC glass ceramics. The single-step heat treatment yielded glass ceramics with the highest MH.  相似文献   

3.
Nano-crystalline La0.8Sr0.2Co0.5Fe0.5O3±δ powder has been successfully synthesized by microwave assisted sol–gel (MWSG) method. The decomposition and crystallization behavior of the gel-precursor was studied by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analysis. From the result of FT-IR and X-ray diffraction patterns, it is found that a perovskite La0.8Sr0.2Co0.5Fe0.5O3±δ was formed by irradiating the precursor at 700 W for 3 min, but the well-crystalline perovskite La0.8Sr0.2Co0.5Fe0.5O3±δ was obtained at 700 W for 35 min. Morphological and specific area analysis of the powder were done by transmission electron microscopy (TEM), scanning electron microscope (SEM) and Brunauer–Emmett–Teller (BET). The surface areas measured was 38.9 m2/g and the grain size was ∼23 nm. Electrochemical properties of pure LSCF cathode on YSZ electrolyte at intermediate temperatures were investigated by using AC impedance analyzer, which shows a low area specific resistance (0.077 Ω cm2 at 1073 K and 0.672 Ω cm2 at 953 K). Moreover, the synthesis period of 20 h usually observed for conventional heating mode is reduced to a few minutes. Thus, the MWSG method is proved to be a novel, extremely facile, time-saving and energy-efficient route to synthesize LSCF powders.  相似文献   

4.
Mass spectrometry has been used to assess plasma composition during a low-energy plasma-enhanced chemical vapor deposition (LEPECVD) process using argon-silane-hydrogen (Ar-SiH4-H2) gas mixtures with input flows of 50 sccm Ar, 2–20 sccm SiH4 and 0–50 sccm H2 at total pressures of 1–4 Pa. Energy-integrated ion densities, residual gas analysis and threshold ionization mass spectrometry have been used to characterize the transition from amorphous (a-Si) to nano-crystalline silicon (nc-Si) deposition at constant LEPECVD operating parameters. While relative ion densities have a marked decrease with H2 input, the densities of SiHx (x < 4) radicals show evolution trends depending on the SiH4 and H2 input. For conditions leading to nc-Si growth a turning point is reached above which SiH is the main radical. Observed SiHx density trends with H2 input are explained based on kinetic reaction rates calculated from previously obtained Langmuir probe data.  相似文献   

5.
TiO2–CeO2 oxides for application as ceramic pigments were synthesized by the Pechini method. In the present work the polymeric network of the pigment precursor was studied using thermal analysis. Results obtained using TG and DTA showed the occurrence of three main mass loss stages and profiles associated to the decomposition of the organic matter and crystallization. The kinetics of the degradation was evaluated by means of TG applying different heating rates. The activation energies (E a) and reaction order (n) for each stage were determined using Horowitz–Metzger, Coats–Redfern, Kissinger and Broido methods. Values of E a varying between 257–267 kJ mol–1 and n=0–1 were found. According to the kinetic analysis the decomposition reactions were diffusion controlled.  相似文献   

6.
Voltammetric studies on C60 fullerene particles adhered to an electrode surface by solvent casting or mechanical transfer exhibit evidence of nucleation and growth controlled processes for the C60 0/– and C60 –/2– solid state when the modified electrode is in contact with acetonitrile solutions containing NBu4 + electrolyte. Although peak potentials and peak separations are dependent on scan rate as well as the amount of deposit and temperature, potentials obtained using a zero-current extrapolation method are almost independent of all these parameters. These data enable reversible potentials of –816 and –1168 mV vs. Ag/Ag+ to be obtained in acetonitrile (0.1 M NBu4PF6) respectively for the processes: and . Images obtained by scanning electron microscopy reveal that both the crystalline and particle size is enhanced by 60 s of reductive electrolysis, with the detected (NBu4)2C60 crystals being slightly larger than those of (NBu4)C60. After a short period of potential cycling or controlled potential electrolysis, it is concluded that the data obtained by either method of surface adherence are almost indistinguishable, as are their morphologies. Electronic Publication  相似文献   

7.
This article presents the results of our investigation on the obtaining of Ni0.65Zn0.35Fe2O4 ferrite nanoparticles embedded in a SiO2 matrix using a modified sol–gel synthesis method, starting from tetraethylorthosilicate (TEOS), metal (FeIII,NiII,ZnII) nitrates and ethylene glycol (EG). This method consists in the formation of carboxylate type complexes, inside the silica matrix, used as forerunners for the ferrite/silica nanocomposites. We prepared gels with different compositions, in order to obtain, through a suitable thermal treatment, the nanocomposites (Ni0.65Zn0.35Fe2O4)x–(SiO2)100–x (where x=10, 20, 30, 40, 50, 60 mass%). The synthesized gels were studied by differential thermal analysis (DTA), thermogravimetry (TG) and FTIR spectroscopy. The formation of Ni–Zn ferrite in the silica matrix and the behavior in an external magnetic field were studied by X-ray diffraction (XRD) and quasi-static magnetic measurements (50 Hz).  相似文献   

8.
The thermal decomposition kinetics of nickel ferrite (NiFe2O4) precursor prepared using egg white solution route in dynamical air atmosphere was studied by means of TG with different heating rates. The activation energy (E α) values of one reaction process were estimated using the methods of Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS), which were found to be consistent. The dependent activation energies on extent of conversions of the decomposition reaction indicate “multi-step” processes. XRD, SEM and FTIR showed that the synthesized NiFe2O4 precursor after calcination at 773 K has a pure spinel phase, having particle sizes of ~54 ± 29 nm.  相似文献   

9.
TiO2–SiO2 composite nanoparticles were prepared by a sol–gel process. To obtain the assembly of TiO2–SiO2 composite nanoparticles, different molar ratios of Ti/Si were investigated. Polyurethane (PU)/(TiO2–SiO2) hybrid films were synthesized using the “grafting from” technique by incorporation of modified TiO2–SiO2 composite nanoparticles building blocks into PU matrix. Firstly, 3-aminopropyltriethysilane was employed to encapsulate TiO2–SiO2 composite nanoparticles’ surface. Secondly, the PU shell was tethered to the TiO2–SiO2 core surface via surface functionalized reaction. The particle size of TiO2–SiO2 composite sol was performed on dynamic light scattering, and the microstructure was characterized by X-ray diffraction and Fourier transform infrared. Thermogravimetric analysis and transmission electron microscopy (TEM) employed to study the hybrid films. The average particle size of the TiO2–SiO2 composite particles is about 38 nm when the molar ratio of Ti/Si reaches to1:1. The TEM image indicates that TiO2–SiO2 composite nanoparticles are well dispersed in the PU matrix.  相似文献   

10.
The mononuclear Ru(III) complex, [Ru(bpy)(tppz)Cl][PF6]2.acetylacetone, where tppz is 2,3,5,6-tetrakis(2-pyridyl)pyrazine and bpy is 2,2′-bipyridine, has been prepared and characterized by physicochemical and spectroscopic methods, cyclic voltammetry, and single crystal X-ray structure analysis. The coordination around the Ru(III) center is distorted octahedral, with bite angles of 80.70–161.83° for the chelating bpy and tppz ligands. The two pyridyl rings of the bpy ligand are nearly coplanar. UV–vis spectroelectrochemical studies of this complex in acetonitrile showed a reversible redox behavior evaluated by the maintenance of isosbestic points in the UV–vis spectrum for both forward reduction and reverse oxidation processes. Magnetic susceptibility data derived from paramagnetic NMR data revealed an effective magnetic moment of 1.79 BM at room temperature.  相似文献   

11.
The heat capacity and the heat content of bismuth niobate BiNb5O14 were measured by the relaxation time method, DSC and drop method, respectively. The temperature dependence of heat capacity in the form C pm=455.84+0.06016T–7.7342·106/T 2 (J K–1 mol–1) was derived by the least squares method from the experimental data. Furthermore, the standard molar entropy at 298.15 K S m=397.17 J K–1 mol–1 was derived from the low temperature heat capacity measurement.  相似文献   

12.
Blue-light-emitting Sr2CeO4 phosphors were synthesized via a sol–gel process and the conventional solid-state method in this study. The developed sol–gel process lowered the synthesis temperature of monophasic Sr2CeO4 to as low as 900 °C. In comparison with the solid-state derived powders, the sol–gel derived powders had more uniform morphology and smaller particle sizes. In addition, sol–gel derived Sr2CeO4 displayed higher luminescent intensity than that prepared via the solid-state route under the same heating conditions. This is attributed to the improved compositional homogeneity and crystallinity in the sol–gel process. During the heating processes, Sr2CeO4 tended to thermally decompose at elevated temperatures. This decomposition reaction resulted in the formation of an impurity phase- SrCeO3 and thereby a decrease in the luminescent intensity. For obtaining Sr2CeO4 phosphors with high luminescent intensity, the heating conditions in both processes need to be well modulated.  相似文献   

13.
An advanced and powerful chemometric approach is proposed for the analysis of incomplete multiset data obtained by fusion of hyphenated liquid chromatographic DAD/MS data with UV spectrophotometric data from acid–base titration and kinetic degradation experiments. Column- and row-wise augmented data blocks were combined and simultaneously processed by means of a new version of the multivariate curve resolution-alternating least squares (MCR-ALS) technique, including the simultaneous analysis of incomplete multiset data from different instrumental techniques. The proposed procedure was applied to the detailed study of the kinetic photodegradation process of the amiloride (AML) drug. All chemical species involved in the degradation and equilibrium reactions were resolved and the pH dependent kinetic pathway described.  相似文献   

14.
The present work deals with the composite system (CuI) x –(Ag2O–TeO2)100– x , where x=30, 35, 40, 45, 50, 55, 60, 65, 70 and 75 mol%, respectively, synthesized by a solid-state reaction route. Powder specimens were analysed using differential scanning calorimetry, X-ray diffraction and Fourier transform infrared techniques. These studies have revealed the formation of Cu3TeO6, AgI and/or other phases. The ambient temperature electrical conductivities obtained for the samples using a complex impedance method were found to lie in the range 10–6–10–4 Scm–1, with low activation energies, thus indicating their superionic nature. The typical composition 35CuI–32.5Ag2O–32.5TeO2 was identified as the best conducting one, having an electrical conductivity of 6×10–4 Scm–1 at 296 K and an activation energy of 0.23 eV. Ion transport number measurements carried out using Wagner's polarization technique as well as by an electromotive force method suggested that silver ions were responsible for the observed transport features of the composite system. Electronic Publication  相似文献   

15.
To study the effect of atmospheric type and heating rate on formation mechanism of MoSi2, the Mo + 2Si powder mixture was exposed to simultaneous thermal analysis (STA) in air atmosphere at different heating rates (10, 15, and 20 °C/min). To further study the changes, thermal analyses of molybdenum powders and consumed silicon were also performed separately. An amount of aluminum powder (5 wt.%) was also added to Mo + 2Si powder mixture and exposed to thermal analysis at different heating rates (10, 15, and 20 °C/min) to study the effect of the presence of active elements (like aluminum) on the trend of the performance of changes. To perform phase studies on the products of the thermal analysis at a later stage, each product was separately tested by an X-ray diffraction (XRD) method. Contrary to expectations, the XRD patterns showed that the trends of changes during thermal analysis were not in the direction of MoSi2, and the DTA–TG peaks obtained from these analyses were in fact related to other changes. Ultimately, the results showed that the peaks on the DTA curves resulted from the oxidation of molybdenum particles; and the (MoO3) melt of the product, and in continuation of the reduction of a part of this oxide, it resulted during the silicothermic and aluminothermy reactions. The results of this research also showed that with regard to the presence of intensive oxidation tendency of molybdenum particles, there is no chance for the formation of MoSi2 by heating the powder mixture of Mo + 2Si in air atmosphere and at low heating rates.  相似文献   

16.
Carrying out crystallization studies for both Se0.95In0.05 and Se0.90In0.10 chalcogenide glasses under non-isothermal conditions at different heating rates, it was realized that a rate controlling process occurs where random nucleation of one- to two-dimensional growth is accompanied with the introduction of up to 10 at% In into glassy Se matrix. The crystallization kinetics together with its dimensionality has been studied using the four currently used isoconversional models (Kissinger–Akahira–Sunose, Ozawa–Flynn–Wall, Tang, and Starink). The activation energy of crystallization (E c) has been determined using these indicated four models where a satisfactory concurrence is achieved. The value of E c shows a decrease while increasing both the In-content as well as the extent of crystallization.  相似文献   

17.
Yttrium orthoborate crystallizes in the vaterite-type structure and has two polymorphous forms, viz. a low- und a high temperature one. DTA measurements of YBO3 confirmed a reversible phase transition with a large thermal hysteresis. The phase transition has been accurately characterized by the application of different heating and cooling rates (β). Consequently, the extrapolation of the experimental data to zero β yields the transition points at 986.9°C for the heating up and at 596.5°C for the cooling down cycle. These values correspond to samples just after treatment at 1350°C. For samples with a different ‘thermal history’ other phase transition temperatures are observed, (e.g. after having performed several heating and cooling cycles). The linear relationship between the associated DTA signal ΔT=T onsetT offset and the square root of the heating rate β was confirmed, but the relation between T onset and square root of β is not found here. From the empirical data a good linear fitting between T onset and ln(β+1) can be derived. From the kinetic analysis (Kissinger method) of the phase transformation of YBO3 an apparent activation energy of about 1386 kJ mol–1 for heating and of about 568 kJ mol–1 for cooling can be determined  相似文献   

18.
This research is part of a European project (namely, CODICE project), main objective of which is modelling, at a multi-scale, the evolution of the mechanical performance of non-degraded and degraded cementitious matrices. For that, a series of experiments were planned with pure synthetic tri-calcium silicate (C3S) and bi-calcium silicate (C2S) (main components of the Portland cement clinker) to obtain different calcium–silicate–hydrate (C–S–H) gel structures during their hydration. The characterization of those C–S–H gels and matrices will provide experimental parameters for the validation of the multi-scale modelling scheme proposed. In this article, a quantitative method, based on thermal analyses, has been used for the determination of the chemical composition of the C–S–H gel together with the degree of hydration and quantitative evolution of all the components of the pastes. Besides, the microstructure and type of silicate tetrahedron and mean chain length (MCL) were studied by scanning electron microscopy (SEM) and 29Si magic-angle-spinning (MAS) NMR, respectively. The main results showed that the chemical compositions for the C–S–H gels have a CaO/SiO2 M ratio almost constant of 1.7 for both C3S and C2S compounds. Small differences were found in the gel water content: the H2O/SiO2 M ratio ranged from 2.9 ± 0.2 to 2.6 ± 0.2 for the C3S (decrease) and from 2.4 ± 0.2 to 3.2 ± 0.2 for the C2S (increase). The MCL values of the C–S–H gels, determined from 29Si MAS NMR, were 3.5 and 4 silicate tetrahedron, for the hydrated C3S and C2S, respectively, remaining almost constant at all hydration periods.  相似文献   

19.
Layered LiNi1/3Co1/3Mn1/3O2 nanoparticles were prepared by modified Pechini method and used as cathode materials for Li-ion batteries. The pyrolytic behaviors of the foamed precursors were analyzed by use of simultaneous thermogravimetric and differential thermal analysis (TG-DTA). Structure, morphology and electrochemical performance characterization of the samples were investigated by X-ray diffraction (XRD), field emission scanning electron macroscopy(SEM), Brunauer-Emmett-Teller (BET) specific surface area and charge–discharge tests. The results showed that the samples prepared by modified Pechini method caclined at 900 °C for 10 h were indexed to pure LiNi1/3Co1/3Mn1/3O2 with well hexagonal structure. The particle size was in a range of 100–300 nm. The specific surface area was larger than that of the as-obtained sample by Pechini method. Initial discharge capacity of 163.8 mAh/g in the range 2.8–4.4 V (vs. Li/Li+) and at 0.1C for LiNi1/3Co1/3Mn1/3O2 prepared by modified Pechini method was obtained, higher than that of the sample prepared by Pechini method (143.5 mAh/g). Moreover, the comparison of electrochemical results at different current rates indicated that the sample prepared by modified Pechini method exhibited improved rate capability.  相似文献   

20.
Pb1–xLaxTiO3 (PLT) nanocrystalline powders were obtained by polymeric precursor method. The samples were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG) techniques to characterize properly the distinct thermal events occurring during synthesis. The X-ray diffraction patterns show a tetragonal structure for the samples with x=0.10 and 0.15. An increase of the lanthanum concentration to x=0.20 led to a highly symmetric structure, cubic on average. The powders obtained at the end of the synthesis had an average particle size of 30 to 70 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号