首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 566 毫秒
1.
Relative stereochemistry is predicted for ambuic acid using a novel solid-state NMR approach. This NMR technique entails a comparison of measured shift tensor principal values with computed values for all diastereomers, allowing the selection of a best-fit structure. The proposed method extends previous solution NMR structural data by simultaneously modeling with high statistical probability hydrogen-bonding arrangements and molecular conformation at two positions. A dimeric structure is proposed for ambuic acid based on the initial poor fit of the carboxyl carbon tensors to a monomeric model. The dimer model, consisting of hydrogen bonding between pairs of neighboring carboxyl groups, reduces the root mean square error at the carboxy tensor by a factor of 2.7. Lattice details are thus also described by the proposed approach. The structural characterization method presented is of general applicability and may be especially useful for characterizing difficult to crystallize or hydrogen-poor materials.  相似文献   

2.
Synchrotron X-ray powder diffraction and solid-state (13)C NMR shift tensor data are combined to provide a unique path to structure in microcrystalline organic solids. Analysis is demonstrated on ambuic acid powder, a widely occurring natural product, to provide the complete crystal structure. The NMR data verify phase purity, specify one molecule per asymmetric unit, and provide an initial structural model including relative stereochemistry and molecular conformation. A refinement of X-ray data from the initial model establishes that ambuic acid crystallizes in the P2(1) space group with unit cell parameters a = 15.5047(7), b = 4.3904(2), and c = 14.1933(4) A and beta = 110.3134(3) degrees . This combined analysis yields structural improvements at two dihedral angles over prior NMR predictions with differences of 103 degrees and 37 degrees found. Only minor differences of +/-5.5 degrees , on average, are observed at all remaining dihedral angles. Predicted hydroxyl hydrogen-bonding orientations also fit NMR predictions within +/-6.9 degrees . This refinement corrects chemical shift assignments at two carbons and reduces the NMR error by approximately 16%. This work demonstrates that the combination of long-range order information from synchrotron powder diffraction data together with the accurate shorter range structure given by solid-state NMR measurements is a powerful tool for studying challenging organic solids.  相似文献   

3.
(14)N solid-state NMR powder patterns have been obtained at high field (21.1 T) using broadband, frequency-swept pulses and a piecewise acquisition method. This approach allowed the electric field gradient (EFG) tensor parameters to be obtained from model organic and inorganic systems featuring spherically asymmetric nitrogen environments (C(Q) values of up to ca. 4 MHz). The advantages and limitations of this experimental approach are discussed, and the observation of (14)N T(2) relaxation anisotropy in certain systems is also reported, which can shed light on dynamic processes, allowing motional geometries and jump rates to be probed. In particular, we show that observable effects of dynamics on (14)N spectra can be mediated by modulation of either the EFG tensor or heteronuclear dipolar couplings. It is demonstrated that the QCPMG protocol can be used to selectively enhance certain types of nitrogen environments on the basis of differences in T(2). We also present the results of extensive density functional theory calculations on these systems, which show remarkably good correlation with the experimental results and allow the prediction of tensor orientations, assignment of parameters to crystallographic sites, and a rationalization of the origin of the EFG tensors in terms of contributions from individual molecular orbitals. This work demonstrates that ultra-wideline (14)N solid-state NMR can, under favorable circumstances, be a straightforward, useful, and informative probe of molecular structure and dynamics.  相似文献   

4.
Natural-abundance (43)Ca solid-state NMR spectroscopy at 21.1 T and gauge-including projector-augmented-wave (GIPAW) DFT calculations are developed as tools to provide insight into calcium binding environments, with special emphasis on the calcium chemical shift (CS) tensor. The first complete analysis of a (43)Ca solid-state NMR spectrum, including the relative orientation of the CS and electric field gradient (EFG) tensors, is reported for calcite. GIPAW calculations of the (43)Ca CS and EFG tensors for a series of small molecules are shown to reproduce experimental trends; for example, the trend in available solid-state chemical shifts is reproduced with a correlation coefficient of 0.983. The results strongly suggest the utility of the calcium CS tensor as a novel probe of calcium binding environments in a range of calcium-containing materials. For example, for three polymorphs of CaCO3 the CS tensor span ranges from 8 to 70 ppm and the symmetry around calcium is manifested differently in the CS tensor as compared with the EFG tensor. The advantages of characterizing the CS tensor are particularly evident in very high magnetic fields where the effect of calcium CS anisotropy is augmented in hertz while the effect of second-order quadrupolar broadening is often obscured for (43)Ca because of its small quadrupole moment. Finally, as an application of the combined experimental-theoretical approach, the solid-state structure of the vaterite polymorph of calcium carbonate is probed and we conclude that the hexagonal P6(3)/mmc space group provides a better representation of the structure than does the orthorhombic Pbnm space group, thereby demonstrating the utility of (43)Ca solid-state NMR as a complementary tool to X-ray crystallographic methods.  相似文献   

5.
We present the first density functional theory based calculations of NMR shielding parameters for a transition metal nucleus using periodic boundary conditions. These calculations employ the gauge-including projected augmented-wave pseudopotential approach. The quality of this method is discussed by comparing experimental and calculated chemical shift tensor eigenvalues for the quadrupolar 51V nucleus in the diamagnetic solid-state compound AlVO4. Furthermore, the combination of shielding tensor with fast and accurate projector augmented-wave electric field gradient tensor calculations allows us to determine the relative orientation of these two tensors.  相似文献   

6.
In this paper, several approaches which allow the investigation of mixtures of polymorphs, employing modern solid-state NMR (SS NMR) spectroscopy are reported. A convenient methodology for characterization of the hydrogen bonding and molecular conformation of a polymorphic sample by means of one-dimensional and two-dimensional, 13C and 15N NMR experiments as well as CSA tensor analysis and theoretical calculations is presented. Two-dimensional heteronuclear SS NMR allowed definition of the polymorphic domain of N-benzoyl-L-phenylalanine (N-Bz-Phe). The graphical method of Herzfeld and Berger was used to measure the 13C and 15N spinning sideband intensities which allowed the calculation of NMR parameters for labeled centers of N-Bz-Phe. The experimental data were compared with computed results obtained by means of the DFT hybrid method with B3PW91 functional and 6-311++G** basis set.  相似文献   

7.
Insight into the unexpectedly small range of isotropic nitrogen chemical shifts in nitrobenzene derivatives is gained through measurements of the chemical shift (CS) tensor by solid-state NMR experiments and ab initio molecular orbital (MO) and density functional theory (DFT) calculations. The principal components, delta(ii), of the (15)N CS tensors have been measured for nitrobenzene, 4-nitroaniline, 4-nitrotoluene, 4-nitroanisole, 4-nitroacetophenone, nitromesitylene, and 2,4,6-tri-tert-butylnitrobenzene. No obvious correlations of the delta(ii) values with traditional reactivity parameters were observed. The CS tensor components change significantly for the para-substituted nitrobenzenes, but these variations nearly cancel to yield isotropic shifts that fall in a range of only 3 ppm. Ab initio calculations of the delta(ii) values at the HF level are in poor agreement with the experimental values, whereas MP2 calculations and DFT calculations employing the B3LYP functional are in better agreement with experiment. The calculated (B3LYP/6-311G) delta(ii) values follow a trend in which delta(11) and delta(33) increase while delta(22) decreases with the accepted electron withdrawing ability of the para substituent. These changes tend to cancel yielding a variation in delta(iso) of only 4 ppm. These calculations indicate that the CS tensor has the same orientation as the carbon CS tensor in the isoelectronic benzoate anion: delta(11) bisects the O-N-O angle, delta(33) is perpendicular to the NO(2) plane, and delta(22) is in the NO(2) plane and perpendicular to delta(11).  相似文献   

8.
(91)Zr (I = 5/2) solid-state NMR (SSNMR) spectra of the zirconocene compounds, Cp(2)ZrCl(2), Cp*(2)ZrCl(2) (1), Cp(2)ZrBr(2) (2), (Me(3)SiC(5)H(4))(2)ZrBr(2) (3), O(Me(2)SiC(5)H(4))(2)ZrBr(2) (4), (1,3-C(5)H(3))(SiMe(2)OSiMe(2))(2)(1,3-C(5)H(3))ZrBr(2) (5), Ind(2)ZrCl(2) (6), Cp(2)ZrMeCl (7), Cp(2)ZrMe(2) (8), and [Cp(2)ZrMe][MeB(C(6)F(5))(3)] (9) have been acquired. Static (91)Zr SSNMR spectra have been acquired for all complexes at magnetic fields of 9.4 and 21.1 T. Cp(2)ZrCl(2) and complexes 1 to 5 possess relatively narrow central transition powder patterns which allows for magic-angle spinning (MAS) (91)Zr solid-state NMR spectra to be acquired at a moderate field strength of 9.4 T. Complexes 6 to 9 possess ultrawideline central transition SSNMR spectra necessitating piece-wise acquisition techniques. From the static and MAS (91)Zr SSNMR spectra, it is possible to measure (91)Zr electric field gradient (EFG) and chemical shift (CS) tensor parameters, as well as the Euler angles which describe their relative orientation. Basis sets and methods for the accurate quantum chemical calculation of (91)Zr EFG and CS tensors have been identified. The origin of the observed EFG and CS tensor parameters are further investigated by visualization of the EFG and CS tensor orientations within the molecular frames. Correlations between the observed and calculated NMR tensor parameters and molecular symmetry and structure are made. All of these observations suggest that (91)Zr SSNMR spectroscopy can be utilized to probe the molecular structure of a variety of homogeneous and heterogeneous olefin polymerization catalysts.  相似文献   

9.
We have used solid-state 17O NMR experiments to determine the 17O quadrupole coupling (QC) tensor and chemical shift (CS) tensor for the carbonyl oxygen in p-nitro-[1-(17)O]benzaldehyde. Analyses of solid-state 17O NMR spectra obtained at 11.75 and 21.15 T under both magic-angle spinning (MAS) and stationary conditions yield the magnitude and relative orientation of these two tensors: CQ = 10.7 +/- 0.2 MHz, etaQ = 0.45 +/- 0.10, delta11 = 1050 +/- 10, delta22 = 620 +/- 10, delta33 = -35 +/- 10, alpha = 90 +/- 10, beta = 90 +/- 2, gamma = 90 +/- 10 degrees. The principal component of the 17O CS tensor with the most shielding, delta33, is perpendicular to the H-C=O plane, and the tensor component with the least shielding, delta11, lies along the C=O bond. For the 17O QC tensor, the largest (chi(zz)) and smallest (chi(xx)) components are both in the H-C=O plane being perpendicular and parallel to the C=O bond, respectively. This study represents the first time that these two fundamental 17O NMR tensors have been simultaneously determined for the carbonyl oxygen of an aldehyde functional group by solid-state 17O NMR. The reported experimental solid-state 17O NMR results provide the first set of reliable data to allow evaluation of the effect of electron correlation on individual CS tensor components. We found that the electron correlation effect exhibits significant influence on 17O chemical shielding in directions within the H-C=O plane. We have also carefully re-examined the existing experimental data on the 17O spin-rotation tensor for formaldehyde and proposed a new set of best "experimental" 17O chemical shielding tensor components: sigma11 = -1139 +/- 80, sigma22 = -533 +/- 80, sigma33 = 431 +/- 5, and sigma(iso) = -414 +/- 60 ppm. Using this new set of data, we have evaluated the accuracy of quantum chemical calculations of the 17O CS tensors for formaldehyde at the Hartree-Fock (HF), density-functional theory (DFT), M?ller-Plesset second-order perturbation (MP2), and coupled-cluster singles and doubles (CCSD) levels of theory. The conclusion is that, while results from HF and DFT tend to underestimate the electron correlation effect, the MP2 method overestimates its contribution. The CCSD results are in good agreement with the experimental data.  相似文献   

10.
X-ray crystallography and solid-state NMR techniques were used to determine the structure and 195Pt NMR chemical shift (CS) tensor of Pt[S2C2(CF3)2]2. This is the first reported crystal structure of a highly oxidizing (CN- or CF3-substituted) neutral bis(dithiolene) complex of a Ni triad metal in its pure form. The 195Pt NMR CS tensor is highly anisotropic and asymmetric; the latter property is attributed to the noninnocent nature of the ligand. The tensor components and orientation are determined with density functional theory calculations.  相似文献   

11.
The molecular dynamics of a series of organometallic complexes covalently bound to amorphous silica surfaces is determined experimentally using solid-state nuclear magnetic resonance (NMR) spectroscopy and density functional theory calculations (DFT). The determination is carried out for a series of alkylidene-based catalysts having the general formula [([triple bond]SiO)M(ER)(=CH(t)Bu)(R')] (M = Re, Ta, Mo or W; ER = C(t)Bu, NAr or CH2(t)Bu; R' = CH2(t)Bu, NPh2, NC4H4). Proton-carbon dipolar coupling constants and carbon chemical shift anisotropies (CSA) are determined experimentally by solid-state NMR. Room-temperature molecular dynamics is quantified through order parameters determined from the experimental data. For the chemical shift anisotropy data, we validate and use a method that integrates static values for the CSA obtained computationally by DFT, obviating the need for low-temperature measurements. Comparison of the room-temperature data with the calculations shows that the widths of the calculated static limit dipolar couplings and CSAs are always greater than the experimentally determined values, providing a clear indication of motional averaging on the NMR time scale. Moreover, the dynamics are found to be significantly different within the series of molecular complexes, with order parameters ranging from = 0.5 for [([triple bond]SiO)Ta(=CH(t)Bu)(CH2(t)Bu)2] and [([triple bond]SiO)Re([triple bond]C(t)Bu)(=CH(t)Bu)(CH2(t)Bu)] to = 0.9 for [([triple bond]SiO)Mo([triple bond]NAr)(=CH(t)Bu)(R') with R' = CH2(t)Bu, NPh2, NC4H4. The data also show that the motion is not isotropic and could be either a jump between two sites or more likely restricted librational motion. The dynamics are discussed in terms of the molecular structure of the surface organometallic complexes, and the orientation of the CSAs tensor at the alkylidene carbon is shown to be directly related to the magnitude of the alpha-alkylidene CH agostic interation.  相似文献   

12.
A preliminary set of solid-state 139La and 15N NMR data for lanthanum-containing metallocenes is presented, including (C5H5)3La, (C5Me4H)3La, [(C5Me5)2La]+[BPh4]-, and 15N-enriched [(C5Me4H)2La(THF)]215N2. Broad 139La NMR spectra, with breadths ranging from 600 kHz to 2.5 MHz, were acquired with piecewise QCPMG techniques at 9.4 T. Simulations of the spectra reveal 139La quadrupolar coupling constants (CQ) between 44 and 105 MHz. In addition, the first NMR measurement of a nitrogen chemical shift (CS) tensor for dinitrogen bound side-on to a metal atom is reported for [(C5Me4H)2La(THF)]215N2. The 139La NMR parameters show remarkable sensitivity to changes in metallocene structure and can be interpreted in an intuitive manner. Preliminary RHF and DFT calculations of 139La electric field gradient (EFG) and nitrogen CS tensors are used to provide tensor orientations and to rationalize the origin of the NMR parameters in terms of molecular structure and symmetry. The sensitivity of 139La and 15N NMR tensor parameters to changes in structure and bonding should prove invaluable in future studies of noncrystalline and disordered systems.  相似文献   

13.
The feasibility of (99)Ru NMR spectroscopy as a tool to characterize solid compounds is demonstrated. Results of the first solid-state (99)Ru NMR investigation of diamagnetic compounds are presented for Ru(NH(3))(6)Cl(2), K(4)Ru(CN)(6). xH(2)O (x = 0, 3), LaKRu(CN)(6), and Ru(3)(CO)(12). The sensitivity of the ruthenium magnetic shielding tensor to subtle changes in the local structure about the ruthenium nucleus is highlighted by comparing the (99)Ru isotropic chemical shift of Ru(NH(3))(6)Cl(2) in aqueous solutions and in the solid state. The narrow isotropic (99)Ru NMR peak observed for solid Ru(NH(3))(6)Cl(2) indicates that this compound is an ideal secondary reference sample for solid-state (99)Ru NMR studies. The isotropic (99)Ru chemical shift, (99)Ru nuclear quadrupolar coupling constant, C(Q), and quadrupolar asymmetry parameter of K(4)Ru(CN)(6). xH(2)O (x = 0, 3) are shown to be sensitive to x. For Ru(3)(CO)(12), the magnetic shielding tensors of each of the three nonequivalent Ru nuclei have spans of 1300-1400 ppm, and the (99)Ru C(Q) values are also similar, 1.36-1.85 MHz, and are surprisingly small given that (99)Ru has a moderate nuclear quadrupole moment. Information about the relative orientation of the Ru magnetic shielding and electric field gradient tensors has been determined for Ru(3)(CO)(12) from experimental (99)Ru NMR spectra as well as quantum chemical calculations.  相似文献   

14.
A novel method for the determination of the relative stereochemistry of six-membered chairlike ring molecules by residual dipolar couplings is presented. C-H residual dipolar couplings were used to investigate the relative stereochemistry of 4,6-O-ethylidene-d-glucopyranose. For this and similar systems it is not necessary to acquire redundant dipolar couplings and to calculate the orientation order tensor. The presented methodology is a paradigmatic leap for the determination of the relative stereochemistry or remote stereochemistry in this kind of fused ring system. Residual dipolar coupling data were collected by 1D and 2D direct-measurement heteronuclear multiple quantum coherence (HMQC) spectroscopy. It was demonstrated that direct measurement of HMQC was quick and accurate for small molecules at natural abundance.  相似文献   

15.
Variable temperature 2H NMR experiments on the orthorhombic phase of selectively deuterated NH3BH3 spanning the static to fast exchange limits of the borane and amine motions are reported. New values of the electric field gradient (EFG) tensor parameters have been obtained from the static 2H spectra of V(zz) = 1.652 (+/-0.082) x 10(21) V/m(2) and eta = 0.00 +/- 0.05 for the borane hydrogens and V(zz) = 2.883 (+/-0.144) x 10(21) V/m(2) and eta = 0.00 +/- 0.05 for the amine hydrogens. The molecular symmetry inferred from the observation of equal EFG tensors for the three borane hydrogens and likewise for the three amine hydrogens is in sharp contrast with the C(s) symmetry derived from diffraction studies. The origin of the apparent discrepancy has been investigated using molecular dynamics methods in combination with electronic structure calculations of NMR parameters, bond lengths, and bond angles. The computation of parameters from a statistical ensemble rather than from a single set of atomic Cartesian coordinates gives values that are in close quantitative agreement with the 2H NMR electric field gradient tensor measurements and are more consistent with the molecular symmetry revealed by the NMR spectra.  相似文献   

16.
A series of l and dl forms of O-phosphorylated amino acids (serine, threonine, tyrosine) have been studied by using solid-state multinuclear NMR spectroscopy and ab initio calculations. Principal elements of the (13)C and (31)P chemical shielding tensors have been measured and discussed in relation to zwitterionic structures and intermolecular contacts. DFT calculations have been compared with experimental data showing their ability to reproduce experimentally obtained tensor values in this challenging class of compounds. The changes of orientation of (31)P chemical shielding tensor with respect to the molecular frame in the presence of hydrogen bonds have been revealed and discussed on the ground of theoretical calculations. The measurements of internuclear P...P distances, based on Zeeman magnetization exchange between (31)P spins with differing chemical shielding tensor orientations, were exploited for a clear distinction between enantiomers and racemates.  相似文献   

17.
High-resolution liquid- and solid-state 119Sn NMR spectroscopy was used to study the bonding environment in the series of monomeric, two-coordinate Sn(II) compounds of formula Sn(X)C6H3-2,6-Trip2 (X = Cl, Cr(eta 5-C5H5)(CO)3, t-Bu, Sn(Me)2C6H3-2,6-Trip2; Trip = C6H2-2,4,6-i-Pr3). The trends in the principal components of the chemical shift tensor extracted from the solid-state NMR data were consistent with the structures determined by X-ray crystallography. Furthermore, the spectra for the first three compounds displayed the largest 119Sn NMR chemical shift anisotropies (up to 3798 ppm) of any tin compound for which data are currently available. Relaxation time based calculations for the dimetallic compound 2,6-Trip2H3C6Sn-Sn(Me)2C6H3-2,6-Trip2 suggests that the chemical shift anisotropy for the two-coordinate tin center may be as much as ca. 7098 ppm, which is as broad as the 1 MHz bandwidth of the NMR spectrometer.  相似文献   

18.
A recently developed chemical shift anisotropy amplification solid-state nuclear magnetic resonance (NMR) experiment is applied to the measurement of the chemical shift tensors in three disaccharides: sucrose, maltose, and trehalose. The measured tensor principal values are compared with those calculated from first principles using density functional theory within the planewave-pseudopotential approach. In addition, a method of assigning poorly dispersed NMR spectra, based on comparing experimental and calculated shift anisotropies as well as isotropic shifts, is demonstrated.  相似文献   

19.
Zinc-phosphite and -phosphate based microporous materials are crystalline open framework materials with potential industrial applications. Although (31)P MAS NMR has been used for characterization of these materials, the local environments around zinc centres have never been directly probed by solid-state NMR due to the many unfavourable NMR characteristics of (67)Zn. In this work, we have characterized the local structure around the Zn centres in several representative microporous zinc phosphites and zinc phosphates by acquiring natural abundance (67)Zn solid-state NMR spectra at ultrahigh magnetic field of 21.1 T. The observed line-shapes are mainly determined by the second order quadrupolar interaction. The NMR tensor parameters were extracted from the spectra and are related to the local geometry around the Zn centre. Computational study of the electric field gradient (EFG) tensor at Zn was performed using hybrid density functional theory (DFT) calculations at B3LYP level of theory on model clusters. The calculations using Projector Augmented-Wave (PAW) method were also carried out with the CASTEP code wherever it was possible. The work has shown that it is possible to study Zn environments in porous materials which often have very low Zn concentration by natural abundance (67)Zn SSNMR at very high magnetic fields.  相似文献   

20.
Central transition (55)Mn NMR spectra of several solid manganese pentacarbonyls acquired at magnetic field strengths of 11.75, 17.63, and 21.1 T are presented. The variety of distinct powder sample lineshapes obtained demonstrates the sensitivity of solid-state (55)Mn NMR to the local bonding environment, including the presence of crystallographically unique Mn sites, and facilitates the extraction of the Mn chemical shift anisotropies, CSAs, and the nuclear quadrupolar parameters. The compounds investigated include molecules with approximate C(4v) symmetry, LMn(CO)(5)(L = Cl, Br, I, HgMn(CO)(5), CH(3)) and several molecules of lower symmetry (L = PhCH(2), Ph(3-n)Cl(n)Sn (n= 1, 2, 3)). For these compounds, the Mn CSA values range from <100 ppm for Cl(3)SnMn(CO)(5) to 1260 ppm for ClMn(CO)(5). At 21.1 T the (55)Mn NMR lineshapes are appreciably influenced by the Mn CSA despite the presence of significant (55)Mn quadrupolar coupling constants that range from 8.0 MHz for Cl(3)SnMn(CO)(5) to 35.0 MHz for CH(3)Mn(CO)(5). The breadth of the solid-state (55)Mn NMR spectra of the pentacarbonyl halides is dominated by the CSA at all three applied magnetic fields. DFT calculations of the Mn magnetic shielding tensors reproduce the experimental trends and the magnitude of the CSA is qualitatively rationalized using a molecular orbital, MO, interpretation based on Ramsey's theory of magnetic shielding. In addition to the energy differences between symmetry-appropriate occupied and virtual MOs, the d-character of the Mn MOs is important for determining the paramagnetic shielding contribution to the principal components of the magnetic shielding tensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号