首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption and flocculation by polymers and polymer mixtures   总被引:3,自引:0,他引:3  
Polymers of various types are in widespread use as flocculants in several industries. In most cases, polymer adsorption is an essential prerequisite for flocculation and kinetic aspects are very important. The rates of polymer adsorption and of re-conformation (relaxation) of adsorbed chains are key factors that influence the performance of flocculants and their mode of action. Polyelectrolytes often tend to adopt a rather flat adsorbed configuration and in this state their action is mainly through charge effects, including ‘electrostatic patch’ attraction. When the relaxation rate is quite low, particle collisions may occur while the adsorbed chains are still in an extended state and flocculation by polymer bridging may occur. These effects are now well understood and supported by much experimental evidence. In recent years there has been considerable interest in the use of multi-component flocculants, especially dual-polymer systems. In the latter case, there can be significant advantages over the use of single polymers. Despite some complications, there is a broad understanding of the action of dual polymer systems. In many cases the sequence of addition of the polymers is important and the pre-adsorbed polymer can have two important effects: providing adsorption sites for the second polymer or causing a more extended adsorbed conformation as a result of ‘site blocking’.  相似文献   

2.
Polyester fabric (poly(ethylene terephthalate)) is a hydrophobic polymer. Its hydrophobic nature can be a disadvantage for certain applications like dyeing, finishing, detergency, etc. Physical or chemical modification of the polyester to make it more hydrophilic is therefore desirable for certain performance characteristics. Surface modification of polyester to make it hydrophilic can be achieved by adsorbing polymers on the polyester surface. Starch is a commonly available, hydrophilic polymer used in many textile applications that can be used to modify polyester. However, it needs to be chemically modified so that it can adsorb on the polyester fabric and physically modify the fabric characteristics. The polymers used in this study are two different modified starches—cationic and anionic starches and mixtures of the two. The adsorption kinetics on a polyester substrate was studied. The effect of charge and hydrophobicity on adsorption was investigated. Cationic starches were shown to readily adsorb on polyester and this was attributed to electrostatic interactions. Hydrophobic substituents on the cationic moiety resulted in increased adsorption. This was attributed to the weak hydrophobic interaction between the polymer chains which could result in a more coiled polymer conformation. It is hypothesized that more starch molecules are required for surface coverage of the polyester, resulting in an increase in adsorption. Anionic starch was adsorbed on the substrate but at a slower rate than the cationic starches. It is likely that there is a H bonding between acid groups on the starch and the ester groups of the polyester. However, the anionic starch is desorbed when the polyester is placed in an aqueous medium. When a blend of cationic starch and anionic starch was used, a low concentration of anionic starch was seen to increase adsorption, indicating that the polyelectrolyte complex itself may be adsorbing on the substrate. Further increases cause a decrease in adsorption as no sites may be available on the complex for adsorption. When hydrophobic substituents are present, addition of the anionic starch causes a decrease in adsorption at all concentrations. This was attributed to the “crosslinking” between the hydrophobically modified starch and the anionic polymer.  相似文献   

3.
Nonionic polyethylene oxide (PEO) and anionic polyacrylamide (PAM) flocculation of kaolinite dispersions has been investigated at pH 7.5 in the temperature range 20-60 degrees C. The surface chemistry (zeta potential), particle interactions (shear yield stress), and dewatering behavior were also examined. An increase in the magnitude of zeta potential of kaolinite particles, in the absence of flocculant and at a fixed PEO and PAM concentration, with increasing temperature was observed. The zeta potential behavior of the flocculated particles indicated a decrease in the adsorbed polymer layer thickness, while at the same time, however, the adsorbed polymer density showed a significant increase with increasing temperature. These results suggest that polymer adsorption was accompanied by temperature-influenced conformation changes. The hydrodynamic diameter and supernatant solution viscosity of both polymers decreased with increasing temperature, consistent with a change in polymer-solvent interactions and conformation, prior to adsorption. The analysis of the free energy (DeltaG(ads)) of adsorption showed a strong temperature dependence and the adsorption process to be more entropically than enthalpically driven. The polymer conformation change and increased negative charge at the kaolinite particle surface with increasing temperature resulted in decreased polymer bridging and flocculation performance. Consequently, the shear yield stress and the rate and the extent of dewatering (consolidation) of the pulp decreased significantly at higher temperatures (>40 degrees C). The temperature effect was more pronounced in the presence of PEO than PAM, with 40 and 20 degrees C indicated as the optima for enhanced performance of the latter and former flocculants, respectively. The results demonstrate that a temperature-induced conformation change, together with polymer structure type, plays an important role in flocculation and dewatering behavior of kaolinite dispersions.  相似文献   

4.
The influence of temperature on the adsorption of polyvinyl alcohol (PVA) on a silica surface was studied from 15–35°C. The structure of the polymer adsorption layer was determined from spectrophotometric, viscosity and thermogravimetric measurements. The amount of PVA adsorbed, macromolecules’ conformation in solution, thickness of the polymer adsorption layer, and changes in the heating curve of SiO2 with adsorbed polymer were determined. Temperature influences the PVA chain conformation in solution and the structure of the polymer adsorption layer. A temperature rise causes relaxation of polymer coils which results in an increase in the linear dimensions of PVA chains in the solution, the creation of a thicker adsorption layer, and an increase in polymer adsorbed. Polymer adsorption on the silica surface also causes changes in the heating curve of these systems. The mass losses due to heating are smallest for the systems obtained at 15°C because the least polymer is adsorbed at this temperature.   相似文献   

5.
We have investigated the adsorption of albumin and fibrinogen onto PET (polyethylene terephthalate) and glass surfaces and how pre-adsorption of albumin onto these surfaces can affect the adsorption of later added fibrinogen. For materials and devices being exposed to blood, adsorption of fibrinogen is often a non-wanted event, since fibrinogen is part of the clotting cascade and unspecific adsorption of fibrinogen can have an influence on the activation of platelets. Albumin is often used as blocking agent for avoiding unspecific protein adsorption onto surfaces in devices designed to handle biological samples, including protein solutions. It is based on the assumption that proteins adsorbs as a monolayer on surfaces and that proteins do not adsorb on top of each other. By labelling albumin and fibrinogen with two different radioactive iodine isotopes that emit gamma radiation with different energies, the adsorption of both albumin and fibrinogen has been monitored simultaneously on the same sample. Information about topography and coverage of adsorbed protein layers has been obtained using AFM (Atomic Force Microscopy) analysis in liquid. Our studies show that albumin adsorbs in a multilayer fashion on PET and that fibrinogen adsorbs on top of albumin when albumin is pre-adsorbed on the surfaces.  相似文献   

6.
Associating polymers are hydrophilic long-chain molecules containing a small number of hydrophobic groups, and act as flocculants in aqueous suspensions. The effects of associating and nonassociating polymers on viscosity behavior are studied for silica suspensions. Since flocculation is induced by polymer bridging, the viscosity behavior is converted from Newtonian to shear-thinning profiles. The additions of surfactant cause an increase in viscosity for suspensions prepared with associating polymer, whereas the flow behavior of suspensions with nonassociating polymer is not significantly influenced. In adsorption of associating polymers onto silica particles, the chain may adopt a conformation with a water-soluble backbone attached to the particle surfaces. The hydrophobic groups extending from the chains adsorbed onto different particles can form a micelle by association with surfactant. Therefore, the bridging flocculation is enhanced by surfactant. The cooperative micellar formation between associating polymer and surfactant is responsible for viscosity increase in suspensions.  相似文献   

7.
The in vitro and ex vivo adsorption of blood proteins is studied in order to elucidate the protein-surface interactions which determine the thrombogenicity and thus the applicability of various polymers in blood contacting devices. The in vitro adsorption of albumin and fibrinogen to four polymers shows that at low solution concentrations, more fibrinogen is adsorbed than albumin. At higher solution concentrations, albumin adsorbs in multilayers while fibrinogen adsorbs, and then partially desorbs spontaneously from the surface. Sequential adsorption studies show that fibrinogen and albumin can partially replace each other. Fibrinogen is preferentially adsorbed over albumin in competitive adsorption studies. In ex vivo experiments, more albumin than fibrinogen is adsorbed from blood during the first 120 minutes of whole blood contact. When exposed to flowing whole blood, pre-adsorbed fibrinogen desorbs more rapidly than albumin.  相似文献   

8.
Surface area exclusion chromatography (SAEC) was employed to determine the stability characteristics of saturated homogeneous layers when interfacial exchange or transfer of molecules was promoted. In these experiments, the first polymer layer was established by elution of a column composed of stacked glass-fiber filters with one polymer. Then, after displacement of the void by water, the second polymer was subsequently injected under the same elution conditions. The experiments combine polymers of equal or different molecular weight and/or hydrolysis grade. Histograms of SAEC experiments demonstrate the great stability of the initially adsorbed layer. Domains of high and low adsorption values were determined to exist along the chromatography column after injection of the first polymer sample. The polymer injected second slightly modifies the initial adsorption histogram and mainly overadsorbs on the low adsorption domain of the first polymer. The major result relates to the relaxation phenomenon affecting or not the second adsorbed polymer when it adsorbs on filters belonging to the low adsorption domain of the polymer first injected. The relaxation is impeded when the relaxation of the first polymer is of great amplitude, whereas it occurs when the relaxation of the first polymer is small.  相似文献   

9.
Quartz crystal microbalance with dissipation monitoring (QCM-D) was employed to characterize the adsorption of the model proteins, bovine serum albumin (BSA) and fibronectin (FN), to polypyrrole doped with dextran sulfate (PPy-DS) as a function of DS loading and surface roughness. BSA adsorption was greater on surfaces of increased roughness and was above what could be explained by the increase in surface area alone. Furthermore, the additional mass adsorbed on the rough films was concomitant with an increase in the rigidity of the protein layer. Analysis of the dynamic viscoelastic properties of the protein adlayer reveal BSA adsorption on the rough films occurs in two phases: (1) arrival and initial adsorption of protein to the polymer surface and (2) postadsorption molecular rearrangement to a more dehydrated and compact conformation that facilitates further recruitment of protein to the polymer interface, likely forming a multilayer. In contrast, FN adsorption was independent of surface roughness. However, films prepared from solutions containing the highest concentration of DS (20 mg/mL) demonstrated both an increase in adsorbed mass and adlayer viscoelasticity. This is attributed to the higher DS loading in the conducting polymer film resulting in presentation of a more hydrated molecular structure indicative of a more unfolded and bioactive conformation. Modulating the redox state of the PPy-DS polymers was shown to modify both the adsorbed mass and viscoelastic nature of FN adlayers. An oxidizing potential increased both the total adsorbed mass and the adlayer viscoelasticity. Our findings demonstrate that modification of polymer physicochemical and redox condition alters the nature of protein-polymer interaction, a process that may be exploited to tailor the bioactivity of protein through which interactions with cells and tissues may be controlled.  相似文献   

10.
Chemical homogeneous poly(dimethylsiloxane) (PDMS) surface with dot-like protrusion pattern was used to investigate the individual effect of surface microtopography on protein adsorption and subsequent biological responses. Fibrinogen (Fg) and fibronectin (Fn) were chosen as model proteins due to their effect on platelet and cell adhesion, respectively. Fg labeled with 125I and fluorescein isothiocyanate (FITC) was used to study its adsorption on flat and patterned surfaces. Patterned surface has a 46% increase in the adsorption of Fg when compared with flat surface. However, the surface area of the patterned surface was only 8% larger than that of the flat surface. Therefore, the increase in the surface area was not the only factor responsible for the increase in protein adsorption. Clear fluorescent pattern was visualized on patterned surface, indicating that adsorbed Fg regularly distributed and adsorbed most on the flanks and valleys of the protrusions. Such distribution and local enrichment of Fg presumably caused the specific location of platelets adhered from platelet-rich plasma (PRP) and flowing whole blood (FWB) on patterned surface. Furthermore, the different combination of surface topography and pre-adsorbed Fn could influence the adhesion of L929 cells. The flat surface with pre-adsorbed Fn was the optimum substrate while the virgin patterned surface was the poor substrate in terms of L929 cells spread.  相似文献   

11.
The effect of polymer adsorption kinetics and ionic strength on the dynamics of particle flocculation was quantified using a model system consisting of precipitated calcium carbonate (PCC) and cationic polyacrylamide (CPAM) at a low shear rate. All early flocculations detectable by a photodispersion analyzer (PDA) happened in nonequilibrium polymer adsorption regimes. We observed discrepancies in flocculation rates with the surface coverage theory, which is based on a simple monolayer adsorption model, in both early and late flocculation stages. For instance, the same amount of adsorbed CPAM reached at different polymer doses demonstrated different flocculating capabilities. This highlighted the importance of polymer adsorption kinetics upon flocculation. The transient conformation of the adsorbed CPAM during the kinetic process sometimes even superceded the adsorbed amount in the determination of PCC flocculation. Both antagonistic and synergetic effects of increased ionic strength on the CPAM-induced PCC aggregation were observed during early flocculation. However, late-stage PCC flocculation shared some similarities, irrespective of polymer dose and ionic strength. Despite the decreased amount of adsorbed polymer from the increased ionic strength, the combination of CPAM and salt, at certain concentrations, demonstrated a synergy to promote PCC aggregation more efficiently than the same amount of the respective components.  相似文献   

12.
The temperature influence (15–35 °C) on the adsorption mechanism and conformation of nonionic polymers (polyethylene glycol (PEG), polyethylene oxide (PEO) and polyvinyl alcohol (PVA)) on the zirconium dioxide surface was examined. The applied techniques (spectrophotometry, viscosimetry, potentiometric titration and microelectrophoresis) allowed characterization of the changes in structure and thickness of polymer adsorption layers with the increasing temperature. The rise of temperature favours more stretched conformation of polymer chains on the ZrO2 surface, which results in higher adsorption and thicker adsorption layer. Moreover, these conformational changes of adsorbed macromolecules affect the electric (solid surface charge density) and electrokinetic (zeta potential) properties of the zirconia–polymer interface. The obtained data indicate that the polyvinyl alcohol adsorption has a greater influence on zirconia properties in comparison to that of PEG and PEO. It is due to the presence of acetate groups in the PVA macromolecules (degree of hydrolysis 97.5%), which undergo dissociation.  相似文献   

13.
A theory has been developed for the adsorption of polyelectrolytes on charged interfaces from an aqueous salt solution. This adsorption is determined by the electrical charge density of the polyelectrolyte, the adsorption energy, the salt concentration, the molecular weight, solubility, flexibility, and concentration of polymer. The theory relates these parameters to the properties of the adsorbed polymer layer, i.e., the amount of polymer adsorbed, the fraction of the adsorbent interface covered, the fraction of the segments actually adsorbed on the interface versus the fraction of the segments in the dangling loops, the final surface charge density, and the thickness of the adsorbed layer. As polyelectrolyte adsorption should resemble nonionic polymer adsorption at high ionic strength of the solution or low charge density on the polymer, this work is an extension of the nonionic polymer adsorption theory to polyelectrolyte adsorption. The following effects are taken into account: (a) the conformational change upon adsorption of a coil in solution into a sequence of adsorbed trains interconnected by loops dangling in solution; (b) the interactions of the adsorbed trains with the interface and with each other; (c) the interaction of the dangling loops with the solvent; (d) the change in surface charge density of the adsorbent due to adsorption of charged trains and the accompanying changes in the electrical double layer which contains “small” ions as well as charged loops; (e) the (induced) dipole interaction of the adsorbed trains with the charged adsorbent interface. The theory is worked out for low potentials (Debye—Hückel approximation); in Appendix B an outline of a more complete treatment is given. The predicted adsorption isotherms have the experimentally observed high-affinity character. A relation between the adsorption energy, the surface charge density on the adsorbent, the degree of dissociation of the polymer, and the salt concentration predicts the conditions under which no adsorption will occur. For adsorbent and polymer carrying the same type of charge (both positive or both negative) the adsorption is predicted to decrease with increased charge density on polymer or adsorbent and to increase with salt concentration. If adsorbent and polymer carry different type charges, the adsorption as a function of the degree of dissociation, α, goes through a maximum at a relatively low value of α and, depending on the adsorption energy, an increase in the salt concentration can then increase or decrease the adsorption. At finite polymer concentration in solution the number of adsorbed segments and the fraction of the interface covered practically do not change with an increase in polymer concentration, whereas the total number of polymer molecules adsorbed increases slightly, as does the average fraction of segments in loops. The experimental results for polyelectrolyte adsorption have been reviewed in general and, as far as data are available, the predictions of the theory seem to follow the experimentally observed trends quite closely, except for the thickness of the adsorbed layer. This thickness is systematically overestimated by the theory and two reasons for this are given. The theoretical model implies a not too low ionic strength of the solution. Extrapolation of results to solutions of very low ionic strength is not warranted.  相似文献   

14.
Dynamic light scattering has been used to determine the hydrodynamic thickness of poly(ethylene oxide) (PEO) adsorbed on synthetic anisotropic clay particles (Laponite) as a function of molecular weight. The layer thicknesses, and their increase with molecular weight, indicate that the conformation of the adsorbed layer is very compact and is much smaller than those normally observed for polymer adsorption on flat interfaces. The aggregation kinetics of the polymer coated particles in 5 mM NaCl was analyzed in a quantitative manner, revealing that the potential barrier to aggregation is strongly enhanced when polymer is present.  相似文献   

15.
Adsorption of surfactants and polymers at solid-liquid interfaces is used widely to modify interfacial properties in a variety of industrial processes such as flotation, ceramic processing, flocculation/dispersion, personal care product formulation and enhanced oil recovery. The behavior of surfactants and polymers at interfaces is determined by a number of forces, including electrostatic attraction, covalent bonding, hydrogen bonding, hydrophobic bonding, and solvation and desolvation of various species. The extent and type of the forces involved varies depending on the adsorbate and the adsorbent, and also the composition and other characteristics of the solvent and dissolved components in it. The influence of such forces on the adsorption behavior is reviewed here from a thermodynamics point of view. The experimental results from microcalorimetric and spectroscopic studies of adsorbed layers of different surfactant and polymer systems at solid-liquid interfaces are also presented. Calorimetric data from the adsorption of an anionic surfactant, sodium octylbenzenesulfonate, and a non-ionic surfactant, dodecyloxyheptaethoxyethylalcohol, and their mixtures on alumina, yielded important thermodynamic information. It was found that the adsorption of anionic surfactants alone on alumina was initially highly exothermic due to the electrostatic interaction with the substrate. Further adsorption leading to a solloid (hemimicelle) formation is proposed to be mainly an entropy-driven process. The entropy effect was found to be more pronounced for the adsorption of anionic-non-ionic surfactant mixtures than for the anionic surfactant alone. Fluorescence studies using a pyrene probe on an adsorbed surfactant and polymer layers, along with electron spin resonance (ESR) spectroscopy, reveal the role of surface aggregation and the conformation of the adsorbed molecules in controlling the dispersion and wettability of the system.  相似文献   

16.
The adsorption of hydroxyethylcellulose (HEC), ethyl(hydroxyethyl)cellulose (EHEC), and their hydrophobically modified counterparts HM-HEC and HM-EHEC has been studied on planar gold and citrate-covered gold surfaces by means of quartz crystal microbalance with dissipation monitoring (QCM-D), and on citrate-covered gold particles with the aid of dynamic light scattering (DLS). The QCM-D results indicate that larger amounts of polymer are adsorbed from aqueous solutions of HM-HEC and HM-EHEC on both substrates than from solutions of their unmodified analogues. The adsorption affinity for all the polymers, except EHEC, is higher on the citrate-covered surfaces than on the bare gold substrate. This indicates that more adsorption sites are activated in the presence of the citrate layer. The experimental adsorption data for all the polymers can be described fairly well by the Langmuir adsorption isotherm. However, at very low polymer concentrations significant deviations from the model are observed. The value of the hydrodynamic thickness of the adsorbed polymer layer (delta h), determined from DLS, rises with increasing polymer concentration for all the cellulose derivatives; a Langmuir type of isotherm can be used to roughly describe the adsorption behavior. Because of good solvent conditions for HEC the chains extend far out in the bulk at higher concentrations and the value of delta h is much higher than that of HM-HEC. The adsorption of EHEC and HM-EHEC onto gold particles discloses that the values of delta h are considerably higher for the hydrophobically modified cellulose derivative, and this finding is compatible with the trend in layer thickness estimated from the QCM-D measurements.  相似文献   

17.
The temperature influence (15–35 °C) on the adsorption mechanism and conformation of nonionic polymers (polyethylene glycol (PEG), polyethylene oxide (PEO) and polyvinyl alcohol (PVA)) on the zirconium dioxide surface was examined. The applied techniques (spectrophotometry, viscosimetry, potentiometric titration and microelectrophoresis) allowed characterization of the changes in structure and thickness of polymer adsorption layers with the increasing temperature. The rise of temperature favours more stretched conformation of polymer chains on the ZrO2 surface, which results in higher adsorption and thicker adsorption layer. Moreover, these conformational changes of adsorbed macromolecules affect the electric (solid surface charge density) and electrokinetic (zeta potential) properties of the zirconia–polymer interface. The obtained data indicate that the polyvinyl alcohol adsorption has a greater influence on zirconia properties in comparison to that of PEG and PEO. It is due to the presence of acetate groups in the PVA macromolecules (degree of hydrolysis 97.5%), which undergo dissociation.  相似文献   

18.
Associating polymers are prepared from poly(oxyelliylene) and a diisocyanate and terminated by linear alcohols with 8 to 18 C-atoms. Solutions of these polymers in pure water and with surfactants have been investigated by dynamic light scattering and NMR self-diffusion. The diffusion results indicate that the polymers in solution form heterodisperse clusters that show a complex behavior of overlap and coupling to each other, a feature which may be described by the coupling theory of Ngai and coworkers. In addition competitive adsorption on polystyrene latex particle is measured and the results indicate a multilayer adsorption structure that is broken down by surfactant addition. Surfactant adsorption seems to be practically independent of adsorbed polymer, except for an “initial inhibition” concentration that may be connected to the desorption of secondary layers of adsorbed polymer.  相似文献   

19.
Adsorption behavior of cationic polymers on bentonite   总被引:1,自引:0,他引:1  
The adsorption behavior of a series of cationic water-soluble polymers poly(diallyldimethylammonium chloride) with different molar masses onto raw bentonite was investigated through the elaboration of their adsorption isotherms and the quantification of the water content of the clay/polymer complexes formed. It was found that the type of adsorption isotherms obtained depends on the chain length of the polymer. The study showed a correlation between the amount of adsorbed polymer and the water content of the clay, after the adsorption experiments. The lower the molar mass of the polymer used, the larger was the reduction on water content of the complexes.  相似文献   

20.
Fibronectin displacement at polymer surfaces   总被引:1,自引:0,他引:1  
The interactions of fibronectin with thin polymer films are studied in displacement experiments using human serum albumin. Fibronectin adsorption and exchange on two different maleic anhydride copolymer surfaces differing in hydrophobicity and surface charge density have been analyzed by quartz crystal microbalance and laser scanning microscopy with respect to adsorbed amounts, viscoelastic properties, and conformation. Fibronectin is concluded to become attached onto hydrophilic surfaces as a "softer", less rigid protein layer, in contrast to the more rigid, densely packed layer on hydrophobic surfaces. As a result, the fibronectin conformation is more distorted on the hydrophobic substrates together with remarkably different displacement characteristics in dependence on the adsorbed fibronectin surface concentration and the displacing albumin solution concentration. While the displacement kinetic remains constant for the strongly interacting surface, an acceleration in fibronectin exchange is observed for the weakly interacting surface with increasing fibronectin coverage. For displaced amounts, no change is determined for the hydrophobic substrate, in contrast to the hydrophilic substrate with a decrease of fibronectin exchange with decreasing coverage leading finally to a constant nondisplaceable amount of adsorbed proteins. Furthermore, the variation of the albumin exchange concentration reveals a stronger dependence of the kinetic for the weakly interacting substrate with higher rates at higher albumin concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号