首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-dimensional (2D) stochastic incompressible non-Newtonian fluid driven by the genuine cylindrical fractional Brownian motion (FBM) is studied with the Hurst parameter $H \in \left( {\tfrac{1} {4},\tfrac{1} {2}} \right)$ under the Dirichlet boundary condition. The existence and regularity of the stochastic convolution corresponding to the stochastic non-Newtonian fluids are obtained by the estimate on the spectrum of the spatial differential operator and the identity of the infinite double series in the analytic number theory. The existence of the mild solution and the random attractor of a random dynamical system are then obtained for the stochastic non-Newtonian systems with $H \in \left( {\tfrac{1} {2},1} \right)$ without any additional restriction on the parameter H.  相似文献   

2.
Let A 1(x, D) and A 2(x, D) be differential operators of the first order acting on l-vector functions ${u= (u_1, \ldots, u_l)}$ in a bounded domain ${\Omega \subset \mathbb{R}^{n}}$ with the smooth boundary ${\partial\Omega}$ . We assume that the H 1-norm ${\|u\|_{H^{1}(\Omega)}}$ is equivalent to ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_1u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ and ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_2u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ , where B i  = B i (x, ν) is the trace operator onto ${\partial\Omega}$ associated with A i (x, D) for i = 1, 2 which is determined by the Stokes integral formula (ν: unit outer normal to ${\partial\Omega}$ ). Furthermore, we impose on A 1 and A 2 a cancellation property such as ${A_1A_2^{\prime}=0}$ and ${A_2A_1^{\prime}=0}$ , where ${A^{\prime}_i}$ is the formal adjoint differential operator of A i (i = 1, 2). Suppose that ${\{u_m\}_{m=1}^{\infty}}$ and ${\{v_m\}_{m=1}^{\infty}}$ converge to u and v weakly in ${L^2(\Omega)}$ , respectively. Assume also that ${\{A_{1}u_m\}_{m=1}^{\infty}}$ and ${\{A_{2}v_{m}\}_{m=1}^{\infty}}$ are bounded in ${L^{2}(\Omega)}$ . If either ${\{B_{1}u_m\}_{m=1}^{\infty}}$ or ${\{B_{2}v_m\}_{m=1}^{\infty}}$ is bounded in ${H^{\frac{1}{2}}(\partial\Omega)}$ , then it holds that ${\int_{\Omega}u_m\cdot v_m \,{\rm d}x \to \int_{\Omega}u\cdot v \,{\rm d}x}$ . We also discuss a corresponding result on compact Riemannian manifolds with boundary.  相似文献   

3.
We prove that the solution semigroup $$S_t \left[ {u_0 ,v_0 } \right] = \left[ {u(t),u_t (t)} \right]$$ generated by the evolutionary problem $$\left\{ P \right\}\left\{ \begin{gathered} u_{tt} + g(u_t ) + Lu + f(u) = 0, t \geqslant 0 \hfill \\ u(0) = u_0 , u_t (0) = \upsilon _0 \hfill \\ \end{gathered} \right.$$ possesses a global attractorA in the energy spaceE o=V×L 2(Ω). Moreover,A is contained in a finite-dimensional inertial setA attracting bounded subsets ofE 1=D(LV exponentially with growing time.  相似文献   

4.
A class of nonlinear first-order processes is formulated as a minimization principle. In the presence of oscillating data, a two-scale model is then derived, via Nguetseng’s notion of two-scale convergence. The dependence on the fine-scale variable is eliminated by averaging with respect to the fine-scale (scale-integration or upscaling); conversely, any two-scale solution is retrieved from a coarse-scale one (scale-disintegration or downscaling). These results are first developed in a general functional framework, and are then applied to the homogenization of a relaxation dynamics in magnetic composites: $ \mathcal{A}(x/\varepsilon) {\partial B_\varepsilon\over \partial t} + \alpha(B_\varepsilon, x/\varepsilon) \ni H_\varepsilon $ $ \nabla \cdot B_\varepsilon=0, \quad \nabla \times H_\varepsilon =J(x) \quad \forall\;\varepsilon > 0. $ Here J is a prescribed current density. ${\mathcal{A}(y)}A class of nonlinear first-order processes is formulated as a minimization principle. In the presence of oscillating data, a two-scale model is then derived, via Nguetseng’s notion of two-scale convergence. The dependence on the fine-scale variable is eliminated by averaging with respect to the fine-scale (scale-integration or upscaling); conversely, any two-scale solution is retrieved from a coarse-scale one (scale-disintegration or downscaling). These results are first developed in a general functional framework, and are then applied to the homogenization of a relaxation dynamics in magnetic composites:
A(x/e) [(?Be)/(?t)] + a(Be, x/e) ' He \mathcal{A}(x/\varepsilon) {\partial B_\varepsilon\over \partial t} + \alpha(B_\varepsilon, x/\varepsilon) \ni H_\varepsilon  相似文献   

5.
In this paper, we prove unique existence of solutions to the generalized resolvent problem of the Stokes operator with first order boundary condition in a general domain ${\Omega}$ of the N-dimensional Eulidean space ${\mathbb{R}^N, N \geq 2}$ . This type of problem arises in the mathematical study of the flow of a viscous incompressible one-phase fluid with free surface. Moreover, we prove uniform estimates of solutions with respect to resolvent parameter ${\lambda}$ varying in a sector ${\Sigma_{\sigma, \lambda_0} = \{\lambda \in \mathbb{C} \mid |\arg \lambda| < \pi-\sigma, \enskip |\lambda| \geq \lambda_0\}}$ , where ${0 < \sigma < \pi/2}$ and ${\lambda_0 \geq 1}$ . The essential assumption of this paper is the existence of a unique solution to a suitable weak Dirichlet problem, namely it is assumed the unique existence of solution ${p \in \hat{W}^1_{q, \Gamma}(\Omega)}$ to the variational problem: ${(\nabla p, \nabla \varphi) = (f, \nabla \varphi)}$ for any ${\varphi \in \hat W^1_{q', \Gamma}(\Omega)}$ . Here, ${1 < q < \infty, q' = q/(q-1), \hat W^1_{q, \Gamma}(\Omega)}$ is the closure of ${W^1_{q, \Gamma}(\Omega) = \{ p \in W^1_q(\Omega) \mid p|_\Gamma = 0\}}$ by the semi-norm ${\|\nabla \cdot \|_{L_q(\Omega)}}$ , and ${\Gamma}$ is the boundary of ${\Omega}$ . In fact, we show that the unique solvability of such a Dirichlet problem is necessary for the unique existence of a solution to the resolvent problem with uniform estimate with respect to resolvent parameter varying in ${(\lambda_0, \infty)}$ . Our assumption is satisfied for any ${q \in (1, \infty)}$ by the following domains: whole space, half space, layer, bounded domains, exterior domains, perturbed half space, perturbed layer, but for a general domain, we do not know any result about the unique existence of solutions to the weak Dirichlet problem except for q =  2.  相似文献   

6.
In this paper, we study the local behaviors of nonnegative local solutions of fractional order semi-linear equations ${(-\Delta )^\sigma u=u^{\frac{n+2\sigma}{n-2\sigma}}}$ with an isolated singularity, where ${\sigma\in (0,1)}$ . We prove that all the solutions are asymptotically radially symmetric. When σ = 1, these have been proved by Caffarelli et al. (Comm Pure Appl Math 42:271–297, 1989).  相似文献   

7.
This paper investigates the asymptotic behavior of the solutions of the Fisher-KPP equation in a heterogeneous medium, $$\partial_t u = \partial_{xx} u + f(x,u),$$ associated with a compactly supported initial datum. A typical nonlinearity we consider is ${f(x,u) = \mu_0 (\phi (x)) u(1-u)}$ , where??? 0 is a 1-periodic function and ${\phi}$ is a ${\mathcal{C}^1}$ increasing function that satisfies ${\lim_{x \to+\infty}\phi (x) = +\infty}$ and ${\lim_{x \to +\infty}\phi' (x) =0}$ . Although quite specific, the choice of such a reaction term is motivated by its highly heterogeneous nature. We exhibit two different behaviors for u for large times, depending on the speed of the convergence of ${\phi}$ at infinity. If ${\phi}$ grows sufficiently slowly, then we prove that the spreading speed of u oscillates between two distinct values. If ${\phi}$ grows rapidly, then we compute explicitly a unique and well determined speed of propagation w ??, arising from the limiting problem of an infinite period. We give a heuristic interpretation for these two behaviors.  相似文献   

8.
We prove an infinite dimensional KAM theorem. As an application, we use the theorem to study the higher dimensional nonlinear Schrödinger equation $$\begin{aligned} iu_t-\triangle u +M_\xi u+f(|u|^2)u=0, \quad t\in \mathbb{R }, x\in \mathbb{T }^d \end{aligned}$$ with periodic boundary conditions, where $M_\xi $ is a real Fourier multiplier and $f(|u|^2)$ is a real analytic function near $u=0$ with $f(0)=0$ . We obtain for the equation a Whitney smooth family of real-analytic small-amplitude linearly-stable quasi-periodic solutions with a nice linear normal form.  相似文献   

9.
The steady mixed convection boundary-layer flow on a vertical circular cylinder embedded in a porous medium filled by a nanofluid is studied for both cases of a heated and a cooled cylinder. The governing system of partial differential equations is reduced to ordinary differential equations by assuming that the surface temperature of the cylinder and the velocity of the external (inviscid) flow vary linearly with the axial distance x measured from the leading edge. Solutions of the resulting ordinary differential equations for the flow and heat transfer characteristics are evaluated numerically for various values of the governing parameters, namely the nanoparticle volume fraction ${\phi}$ , the mixed convection or buoyancy parameter ?? and the curvature parameter ??. Results are presented for the specific case of copper nanoparticles. A critical value ?? c of ?? with ?? c <?0 is found, with the values of | ?? c| increasing as the curvature parameter ?? or nanoparticle volume fraction ${\phi}$ is increased. Dual solutions are seen for all values of ?? >??? c for both aiding, ?? >?0 and opposing, ?? <?0, flows. Asymptotic solutions are also determined for both the free convection limit ${(\lambda \gg 1)}$ and for large curvature parameter ${(\gamma \gg 1)}$ .  相似文献   

10.
We consider solutions of the Schrödinger equation with a weak time-dependent random potential. It is shown that when the two-point correlation function of the potential is rapidly decaying, then the Fourier transform \({\hat\zeta_\epsilon(t,\xi)}\) of the appropriately scaled solution converges point-wise in ξ to a stochastic complex Gaussian limit. On the other hand, when the two-point correlation function decays slowly, we show that the limit of \({\hat\zeta_\epsilon(t,\xi)}\) has the form \({\hat\zeta_0(\xi){\rm exp}(iB_\kappa(t,\xi))}\) where B κ (t, ξ) is a fractional Brownian motion.  相似文献   

11.
A theoretical relation is derived for the bulk stress in dilute suspensions of neutrally buoyant, uniform size, spherical drops in a viscoelastic liquid medium. This is achieved by the classic volume-averaging procedure of Landau and Lifschitz which excludes Brownian motion. The disturbance velocity and pressure fields interior and exterior to a second-order fluid drop suspended in a simple shear flow of another second-order fluid were derived by Peery [9] for small Weissenberg number (We), omitting inertia. The results of the averaging procedure include terms up to orderWe 2. The shear viscosity of a suspension of Newtonian droplets in a viscoelastic liquid is derived as $$\eta _{susp} = \eta _0 \left[ {1 + \frac{{5k + 2}}{{2(k + 1)}}\varphi - \frac{{\psi _{10}^2 \dot \gamma ^2 }}{{\eta _0^2 }}\varphi f_1 (k, \varepsilon _0 )} \right],$$ whereη 0, andω 10 are the viscosity and primary normal stress coefficient of the medium,ε 0 is a ratio typically between ?0.5 and ?0.86,k is the ratio of viscosities of disperse and continuous phases, and \(\dot \gamma \) is the bulk rate of shear strain. This relation includes, in addition to the Taylor result, a shear-thinning factor (f 1 > 0) which is associated with the elasticity of the medium. This explains observed trends in relative shear viscosity of suspensions with rigid particles reported by Highgate and Whorlow [6] and with drops reported by Han and King [8]. The expressions (atO (We 2)) for normal-stress coefficients do not include any strain rate dependence; the calculated values of primary normal-stress difference match values observed at very low strain rates.  相似文献   

12.
We prove the existence of at least one T-periodic solution to a dynamical system of the type $$ - m_i \ddot u_i = \sum\limits_{j = 1,j \ne i}^n {\triangledown V_{ij} (u_i - u_j ,{\text{ }}t)}$$ (1) where the potentials V ij are T-periodic in t and singular at the origin, u i ε R k i=1, ..., n, and k≧3. We also provide estimates on the H 1 norm of this solution. The proofs are based on a variant of the Ljusternik-Schnirelman method. The results here generalize to the n-body problem some results obtained by Bahri & Rabinowitz on the 3-body problem in [6].  相似文献   

13.
We prove various decay bounds on solutions (f n : n > 0) of the discrete and continuous Smoluchowski equations with diffusion. More precisely, we establish pointwise upper bounds on n ? f n in terms of a suitable average of the moments of the initial data for every positive ?. As a consequence, we can formulate sufficient conditions on the initial data to guarantee the finiteness of ${L^p(\mathbb{R}^d \times [0, T])}$ norms of the moments ${X_a(x, t) := \sum_{m\in\mathbb{N}}m^a f_m(x, t)}$ , ( ${\int_0^{\infty} m^a f_m(x, t)dm}$ in the case of continuous Smoluchowski’s equation) for every ${p \in [1, \infty]}$ . In previous papers [11] and [5] we proved similar results for all weak solutions to the Smoluchowski’s equation provided that the diffusion coefficient d(n) is non-increasing as a function of the mass. In this paper we apply a new method to treat general diffusion coefficients and our bounds are expressed in terms of an auxiliary function ${\phi(n)}$ that is closely related to the total increase of the diffusion coefficient in the interval (0, n].  相似文献   

14.
In this paper, we investigate the vanishing viscosity limit for solutions to the Navier–Stokes equations with a Navier slip boundary condition on general compact and smooth domains in R 3. We first obtain the higher order regularity estimates for the solutions to Prandtl’s equation boundary layers. Furthermore, we prove that the strong solution to Navier–Stokes equations converges to the Eulerian one in C([0, T]; H 1(Ω)) and ${L^\infty((0,T) \times \Omega)}$ , where T is independent of the viscosity, provided that initial velocity is regular enough. Furthermore, rates of convergence are obtained also.  相似文献   

15.
We study the following nonlinear Stefan problem $$\left\{\begin{aligned}\!\!&u_t\,-\,d\Delta u = g(u) & &\quad{\rm for}\,x\,\in\,\Omega(t), t > 0, \\ & u = 0 \, {\rm and} u_t = \mu|\nabla_{x} u|^{2} &&\quad {\rm for}\,x\,\in\,\Gamma(t), t > 0, \\ &u(0, x) = u_{0}(x) &&\quad {\rm for}\,x\,\in\,\Omega_0,\end{aligned} \right.$$ where ${\Omega(t) \subset \mathbb{R}^{n}}$ ( ${n \geqq 2}$ ) is bounded by the free boundary ${\Gamma(t)}$ , with ${\Omega(0) = \Omega_0}$ μ and d are given positive constants. The initial function u 0 is positive in ${\Omega_0}$ and vanishes on ${\partial \Omega_0}$ . The class of nonlinear functions g(u) includes the standard monostable, bistable and combustion type nonlinearities. We show that the free boundary ${\Gamma(t)}$ is smooth outside the closed convex hull of ${\Omega_0}$ , and as ${t \to \infty}$ , either ${\Omega(t)}$ expands to the entire ${\mathbb{R}^n}$ , or it stays bounded. Moreover, in the former case, ${\Gamma(t)}$ converges to the unit sphere when normalized, and in the latter case, ${u \to 0}$ uniformly. When ${g(u) = au - bu^2}$ , we further prove that in the case ${\Omega(t)}$ expands to ${{\mathbb R}^n}$ , ${u \to a/b}$ as ${t \to \infty}$ , and the spreading speed of the free boundary converges to a positive constant; moreover, there exists ${\mu^* \geqq 0}$ such that ${\Omega(t)}$ expands to ${{\mathbb{R}}^n}$ exactly when ${\mu > \mu^*}$ .  相似文献   

16.
In this paper we study the fully nonlinear free boundary problem $$\left\{\begin{array}{ll}F(D^{2}u) = 1 & {\rm almost \, everywhere \, in}\, B_{1} \cap \Omega\\ |D^{2} u| \leqq K & {\rm almost \, everywhere \, in} \, B_{1} \setminus \Omega,\end{array}\right.$$ where K > 0, and Ω is an unknown open set. Our main result is the optimal regularity for solutions to this problem: namely, we prove that W 2,n solutions are locally C 1,1 inside B 1. Under the extra condition that ${\Omega \supset \{D{u} \neq 0 \}}$ and a uniform thickness assumption on the coincidence set {D u = 0}, we also show local regularity for the free boundary ${\partial \Omega \cap B_1}$ .  相似文献   

17.
We consider the focusing L 2-critical half-wave equation in one space dimension, $$i \partial_t u = D u - |u|^2 u$$ , where D denotes the first-order fractional derivative. Standard arguments show that there is a critical threshold ${M_{*} > 0}$ such that all H 1/2 solutions with ${\|u\|_{L^2} < M_*}$ extend globally in time, while solutions with ${\|u\|_{L^2} \geq M_*}$ may develop singularities in finite time. In this paper, we first prove the existence of a family of traveling waves with subcritical arbitrarily small mass. We then give a second example of nondispersive dynamics and show the existence of finite-time blowup solutions with minimal mass ${\|u_0\|_{L^2} = M_*}$ . More precisely, we construct a family of minimal mass blowup solutions that are parametrized by the energy E 0 > 0 and the linear momentum ${P_0 \in \mathbb{R}}$ . In particular, our main result (and its proof) can be seen as a model scenario of minimal mass blowup for L 2-critical nonlinear PDEs with nonlocal dispersion.  相似文献   

18.
The integrability theory for the differential equations, which describe the motion of an unconstrained rigid body around a fixed point is well known. When there are constraints the theory of integrability is incomplete. The main objective of this paper is to analyze the integrability of the equations of motion of a constrained rigid body around a fixed point in a force field with potential U(γ)=U(γ 1,γ 2,γ 3). This motion subject to the constraint 〈ν,ω〉=0 with ν is a constant vector is known as the Suslov problem, and when ν=γ is the known Veselova problem, here ω=(ω 1,ω 2,ω 3) is the angular velocity and 〈?,?〉 is the inner product of $\mathbb{R}^{3}$ . We provide the following new integrable cases. (i) The Suslov’s problem is integrable under the assumption that ν is an eigenvector of the inertial tensor I and the potential is such that $$U=-\frac{1}{2I_1I_2}\bigl(I_1\mu^2_1+I_2 \mu^2_2\bigr), $$ where I 1,I 2, and I 3 are the principal moments of inertia of the body, μ 1 and μ 2 are solutions of the first-order partial differential equation $$\gamma_3 \biggl(\frac{\partial\mu_1}{\partial\gamma_2}- \frac{\partial\mu_2}{\partial \gamma_1} \biggr)- \gamma_2\frac{\partial \mu_1}{\partial\gamma_3}+\gamma_1\frac{\partial\mu_2}{\partial \gamma_3}=0. $$ (ii) The Veselova problem is integrable for the potential $$U=-\frac{\varPsi^2_1+\varPsi^2_2}{2(I_1\gamma^2_2+I_2\gamma^2_1)}, $$ where Ψ 1 and Ψ 2 are the solutions of the first-order partial differential equation where $p=\sqrt{I_{1}I_{2}I_{3} (\frac{\gamma^{2}_{1}}{I_{1}}+\frac{\gamma^{2}_{2}}{I_{2}}+ \frac{\gamma^{2}_{3}}{I_{3}} )}$ . Also it is integrable when the potential U is a solution of the second-order partial differential equation where $\tau_{2}=I_{1}\gamma^{2}_{1}+I_{2}\gamma^{2}_{2}+I_{3}\gamma^{2}_{3}$ and $\tau_{3}=\frac{\gamma^{2}_{1}}{I_{1}}+\frac{\gamma^{2}_{2}}{I_{2}}+ \frac{\gamma^{2}_{3}}{I_{3}}$ . Moreover, we show that these integrable cases contain as a particular case the previous known results.  相似文献   

19.
Let ${X = \lambda_{1} x_{1}{\frac{\partial}{\partial {x_1}}} + \lambda_2 x_2 \frac{\partial}{\partial {x_2}} + O(|x|^2)}$ be an analytic vector field near x = 0. We suppose that the linear part of this vector field has real eigenvalues ??1, ??2 and that the ratio ${\eta = -\frac{\lambda_1}{\lambda_2}}$ is a positive irrational number. In a previous paper of the first author and P. De Maesschalck, it was shown that any analytic saddle can be conjugated analytically to a form ??as close as desired?? to the formal normal form. In this paper we will iterate and renormalize these conjugacies. The iteration of this procedure will be strongly connected to the diophantine properties of ?? and we will establish the convergence of this process. A consequence of this convergence will be the two dimensional version of the by now classical linearization theorem of Bruno.  相似文献   

20.
We are concerned with the regularity properties for all times of the equation $$\frac{{\partial U}}{{\partial t}}\left( {t,x} \right) = - \frac{{\partial ^2 }}{{\partial x^2 }}\left[ {U\left( {t,{\text{0}}} \right) - U\left( {t,x} \right)} \right]^2 - v\left( { - \frac{{\partial ^2 }}{{\partial x^2 }}} \right)^\alpha U\left( {t,x} \right)$$ which arises, with α=1, in the theory of turbulence. Here U(t,·) is of positive type and the dissipativity α is a non-negative real number. It is shown that for arbitrary ν≧0 and ?>0, there exists a global solution in \(L^\infty [0,\infty ;H^{\tfrac{3}{2} - \varepsilon } (\mathbb{R})]\) . If ν>0 and \(\alpha > \alpha _{cr} = \tfrac{1}{2}\) , smoothness of initial data persists indefinitely. If 0≦α<α cr, there exist positive constants ν1(α) and ν2(α), depending on the data, such that global regularity persists for ν>ν1(α), whereas, for 0≦ν<ν2(α), the second spatial derivative at the origin blows up after a finite time. It is conjectured that with a suitable choice of α cr, similar results hold for the Navier-Stokes equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号