首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
A large number (1253) of high-quality streaming potential coefficient (\(C_\mathrm{sp})\) measurements have been carried out on Berea, Boise, Fontainebleau, and Lochaline sandstones (the latter two including both detrital and authigenic overgrowth forms), as a function of pore fluid salinity (\(C_\mathrm{f})\) and rock microstructure. All samples were saturated with fully equilibrated aqueous solutions of NaCl (10\(^{-5}\) and 4.5 mol/dm\(^{3})\) upon which accurate measurements of their electrical conductivity and pH were taken. These \(C_\mathrm{sp}\) measurements represent about a fivefold increase in streaming potential data available in the literature, are consistent with the pre-existing 266 measurements, and have lower experimental uncertainties. The \(C_\mathrm{sp}\) measurements follow a pH-sensitive power law behaviour with respect to \(C_\mathrm{f}\) at medium salinities (\(C_\mathrm{sp} =-\,1.44\times 10^{-9} C_\mathrm{f}^{-\,1.127} \), units: V/Pa and mol/dm\(^{3})\) and show the effect of rock microstructure on the low salinity \(C_\mathrm{sp}\) clearly, producing a smaller decrease in \(C_\mathrm{sp}\) per decade reduction in \(C_\mathrm{f}\) for samples with (i) lower porosity, (ii) larger cementation exponents, (iii) smaller grain sizes (and hence pore and pore throat sizes), and (iv) larger surface conduction. The \(C_\mathrm{sp}\) measurements include 313 made at \(C_\mathrm{f} > 1\) mol/dm\(^{3}\), which confirm the limiting high salinity \(C_\mathrm{sp}\) behaviour noted by Vinogradov et al., which has been ascribed to the attainment of maximum charge density in the electrical double layer occurring when the Debye length approximates to the size of the hydrated metal ion. The zeta potential (\(\zeta \)) was calculated from each \(C_\mathrm{sp}\) measurement. It was found that \(\zeta \) is highly sensitive to pH but not sensitive to rock microstructure. It exhibits a pH-dependent logarithmic behaviour with respect to \(C_\mathrm{f}\) at low to medium salinities (\(\zeta =0.01133 \log _{10} \left( {C_\mathrm{f} } \right) +0.003505\), units: V and mol/dm\(^{3})\) and a limiting zeta potential (zeta potential offset) at high salinities of \({\zeta }_\mathrm{o} = -\,17.36\pm 5.11\) mV in the pH range 6–8, which is also pH dependent. The sensitivity of both \(C_\mathrm{sp}\) and \(\zeta \) to pH and of \(C_\mathrm{sp}\) to rock microstructure indicates that \(C_\mathrm{sp}\) and \(\zeta \) measurements can only be interpreted together with accurate and equilibrated measurements of pore fluid conductivity and pH and supporting microstructural and surface conduction measurements for each sample.  相似文献   

2.
Fluid flows through porous media are subject to different regimes, ranging from linear creeping flows to unsteady, chaotic turbulence. These different flow regimes at the pore scale have repercussions at larger scales, with the macroscale drag force experienced by a fluid moving through the medium becoming a nonlinear function of the average velocity beyond the creeping flow regime. Accurate prediction of the transition between different flow regimes is an important challenge with repercussions onto many engineering applications. Here, we are interested in the first deviation from Darcy’s law, when inertia effects become sizeable. Our goal is to define a Reynolds number, \(Re_{\mathrm{C}}\), so that the inertial deviation occurs when \(Re_{\mathrm{C}}\sim 1\) for any microstructure. The difficulty in doing so is to reduce the multiple length scales characterizing the geometry of the porous structure to a single length scale, \(\ell \). We analyze the problem using the method of volume averaging and identify a length scale in the form \(\ell =C_\lambda \sqrt{\nicefrac {K_\lambda }{\epsilon _\beta }}\), with \(C_\lambda \) a parameter that indicates the sensitivity of the microstructure to inertia. The main advantage of this definition is that an explicit formula for \(C_\lambda \) is given; \(C_\lambda \) is computed from a creeping flow simulation in the porous medium; and \(Re_{\mathrm{C}}\) can be used to predict the transition to a non-Darcian regime more accurately than by using Reynolds numbers based on alternative length scales. The theory is validated numerically with data from flow simulations for a variety of microstructures.  相似文献   

3.
In this article, we investigate the initial and boundary blow-up problem for the \(p\)-Laplacian parabolic equation \(u_t-\Delta _p u=-b(x,t)f(u)\) over a smooth bounded domain \(\Omega \) of \(\mathbb {R}^N\) with \(N\ge 2\), where \(\Delta _pu=\mathrm{div}(|\nabla u|^{p-2}\nabla u)\) with \(p>1\), and \(f(u)\) is a function of regular variation at infinity. We study the existence and uniqueness of positive solutions, and their asymptotic behaviors near the parabolic boundary.  相似文献   

4.
Particle image velocimetry (PIV) has been used to investigate transitional and turbulent flow in a randomly packed bed of mono-sized transparent spheres at particle Reynolds number, \(20<{{ Re}}_{\mathrm{p}}< 3220\). The refractive index of the liquid is matched with the spheres to provide optical access to the flow within the bed without distortions. Integrated pressure drop data yield that Darcy law is valid at \({{ Re}}_{\mathrm{p}} \approx 80\). The PIV measurements show that the velocity fluctuations increase and that the time-averaged velocity distribution start to change at lower \({{ Re}}_{\mathrm{p}}\). The probability for relatively low and high velocities decreases with \({{ Re}}_{\mathrm{p}}\) and recirculation zones that appear in inertia dominated flows are suppressed by the turbulent flow at higher \({{ Re}}_{\mathrm{p}}\). Hence there is a maximum of recirculation at about \({{ Re}}_{\mathrm{p}} \approx 400\). Finally, statistical analysis of the spatial distribution of time-averaged velocities shows that the velocity distribution is clearly and weakly self-similar with respect to \({{ Re}}_{\mathrm{p}}\) for turbulent and laminar flow, respectively.  相似文献   

5.
We show that the mean wall-shear stresses in wall-modeled large-eddy simulations (WMLES) of high-speed flows can be off by up to \(\approx 100\%\) with respect to a DNS benchmark when using the van-Driest-based damping function, i.e., the conventional damping function. Errors in the WMLES-predicted wall-shear stresses are often attributed to the so-called log-layer mismatch, which, albeit also an error in wall-shear stresses \(\tau _\mathrm{w}\), is an error of about \(15\%\). The larger error identified here cannot be removed using the previously developed remedies for the log-layer mismatch. This error may be removed by using the semi-local scaling, i.e., \(l_\nu =\mu /\sqrt{\rho \tau _\mathrm{w}}\), in the damping function, where \(\mu \) and \(\rho \) are the local mean dynamic viscosity and density, respectively.  相似文献   

6.
Conditions guaranteeing asymptotic stability for the differential equation
$$\begin{aligned} x''+h(t)x'+\omega ^2x=0 \qquad (x\in \mathbb {R}) \end{aligned}$$
are studied, where the damping coefficient \(h:[0,\infty )\rightarrow [0,\infty )\) is a locally integrable function, and the frequency \(\omega >0\) is constant. Our conditions need neither the requirement \(h(t)\le \overline{h}<\infty \) (\(t\in [0,\infty )\); \(\overline{h}\) is constant) (“small damping”), nor \(0< \underline{h}\le h(t)\) (\(t\in [0,\infty )\); \(\underline{h}\) is constant) (“large damping”); in other words, they can be applied to the general case \(0\le h(t)<\infty \) (\(t\in [0,\infty \))). We establish a condition which combines weak integral positivity with Smith’s growth condition
$$\begin{aligned} \int ^\infty _0 \exp [-H(t)]\int _0^t \exp [H(s)]\,\mathrm{{d}}s\,\mathrm{{d}}t=\infty \qquad \left( H(t):=\int _0^t h(\tau )\,\mathrm{{d}}\tau \right) , \end{aligned}$$
so it is able to control both the small and the large values of the damping coefficient simultaneously.
  相似文献   

7.
We consider the flow past a sphere held at a fixed position in a uniform incoming flow but free to rotate around a transverse axis. A steady pitchfork bifurcation is reported to take place at a threshold \(Re^\mathrm{OS}=206\) leading to a state with zero torque but nonzero lift. Numerical simulations allow to characterize this state up to \(Re\approx 270\) and confirm that it substantially differs from the steady-state solution which exists in the wake of a fixed, non-rotating sphere beyond the threshold \(Re^\mathrm{SS}=212\). A weakly nonlinear analysis is carried out and is shown to successfully reproduce the results and to give substantial improvement over a previous analysis (Fabre et al. in J Fluid Mech 707:24–36, 2012). The connection between the present problem and that of a sphere in free fall following an oblique, steady (OS) path is also discussed.  相似文献   

8.
This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air–water flow, driven by a rotating top disk in a vertical conical container. As water height \(H_{\mathrm{w}}\) and cone half-angle \(\beta \) vary, numerous flow metamorphoses occur. They are investigated for \(\beta =30^{\circ }, 45^{\circ }\), and \(60^{\circ }\). For small \(H_{\mathrm{w}}\), the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as \(H_{\mathrm{w}}\) exceeds a threshold depending on \(\beta \). For all \(\beta \), the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.  相似文献   

9.
Accurate monitoring of multiphase displacement processes is essential for the development, validation and benchmarking of numerical models used for reservoir simulation and for asset characterization. Here we demonstrate the first application of a chemically-selective 3D magnetic resonance imaging (MRI) technique which provides high-temporal resolution, quantitative, spatially resolved information of oil and water saturations during a dynamic imbibition core flood experiment in an Estaillades carbonate rock. Firstly, the relative saturations of dodecane (\(S_{\mathrm{o}})\) and water (\(S_{\mathrm{w}})\), as determined from the MRI measurements, have been benchmarked against those obtained from nuclear magnetic resonance (NMR) spectroscopy and volumetric analysis of the core flood effluent. Excellent agreement between both the NMR and MRI determinations of \(S_{\mathrm{o}}\) and \(S_{\mathrm{w}}\) was obtained. These values were in agreement to 4 and 9% of the values determined by volumetric analysis, with absolute errors in the measurement of saturation determined by NMR and MRI being 0.04 or less over the range of relative saturations investigated. The chemically-selective 3D MRI method was subsequently applied to monitor the displacement of dodecane in the core plug sample by water under continuous flow conditions at an interstitial velocity of \(1.27\times 10^{-6}\,\hbox {m}\,\hbox {s}^{-1}\) (\(0.4\,\hbox {ft}\,\hbox {day}^{-1})\). During the core flood, independent images of water and oil distributions within the rock core plug at a spatial resolution of \(0.31\,\hbox {mm}\times 0.39\,\hbox {mm} \times 0.39\,\hbox {mm}\) were acquired on a timescale of 16 min per image. Using this technique the spatial and temporal dynamics of the displacement process have been monitored. This MRI technique will provide insights to structure–transport relationships associated with multiphase displacement processes in complex porous materials, such as those encountered in petrophysics research.  相似文献   

10.
Stereoscopic particle image velocimetry has been used to investigate inertia dominated, transitional and turbulent flow in a randomly packed bed of monosized PMMA spheres. By using an index-matched fluid, the bed is optically transparent and measurements can be performed in an arbitrary position within the porous bed. The velocity field observations are carried out for particle Reynolds numbers, \({Re}_{{p}}\), between 20 and 3220, and the sampling is done at a frequency of 75 Hz. Results show that, in porous media, the dynamics of the flow can vary significantly from pore to pore. At \({Re}_{{p}}\) around 400 the spatially averaged time fluctuations of total velocity reach a maximum and the spatial variation of the time-averaged total velocity, \(u_\mathrm{tot}\) increases up to about the same \({Re}_{{p}}\) and then it decreases. Also in the studied planes, a considerable amount of the fluid moves in the perpendicular directions to the main flow direction and the time-averaged magnitude of the velocity in the main direction, \(u_{x}\), has an averaged minimum of 40% of the magnitude of \(u_\mathrm{tot}\) at \({Re}_{{p}}\) about 400. For \({Re}_{{p}} > 1600\), this ratio is nearly constant and \(u_{x}\) is on average a little bit less than 50% of \(u_\mathrm{tot}\). The importance of the results for longitudinal and transverse dispersion is discussed.  相似文献   

11.
Single-phase permeability k has intensively been investigated over the past several decades by means of experiments, theories and simulations. Although the effect of surface roughness on fluid flow and permeability in single pores and fractures as well as networks of fractures was studied previously, its influence on permeability in a random mass fractal porous medium constructed of pores of different sizes remained as an open question. In this study, we, therefore, address the effect of pore–solid interface roughness on single-phase flow in random fractal porous media. For this purpose, we apply a mass fractal model to construct porous media with a priori known mass fractal dimensions \(2.579 \le D_{\mathrm{m}} \le 2.893\) characterizing both solid matrix and pore space. The pore–solid interface of the media is accordingly roughened using the Weierstrass–Mandelbrot approach and two parameters, i.e., surface fractal dimension \(D_{\mathrm{s}}\) and root-mean-square (rms) roughness height. A single-relaxation-time lattice Boltzmann method is applied to simulate single-phase permeability in the corresponding porous media. Results indicate that permeability decreases sharply with increasing \(D_{\mathrm{s}}\) from 1 to 1.1 regardless of \(D_{\mathrm{m}}\) value, while k may slightly increase or decrease, depending on \(D_{\mathrm{m}}\), as \(D_{\mathrm{s}}\) increases from 1.1 to 1.6.  相似文献   

12.
Information transmission delays are an inherent factor of neuronal systems as a consequence of the finite propagation speeds and time lapses occurring by both dendritic and synaptic processes. In real neuronal systems, some delay between two neurons is too small and can be ignored, which results in partial time delay. In this paper, we focus on investigating influences of partial time delay on synchronization transitions in a excitatory–inhibitory (E–I) coupled neuronal networks. Here, we suppose time delay between two neurons equals to \(\tau \) with probability \(p_{\mathrm{delay}}\) and investigate effect of partial time delay on synchronization transitions of the neuronal networks by controlling \(\tau \) and \(p_{\mathrm{delay}}\) under three cases. In these three cases, excitatory synapses are always considered to delayed with probability \(p_{\mathrm{delay}}\), while inhibitory synapses are considered to be without delays (case I), delayed with probability \(p_{\mathrm{delay}}\) (case II), and always delayed (case III), respectively. It is revealed that, in the first two cases, partial time delay has little influences on synchronization of the neuronal network for small \(p_{\mathrm{delay}}\), while it could induce synchronization transitions at \(\tau \) around integer multiples of the period of individual neuron T when \(p_{\mathrm{delay}}\) is large enough, while in the case III, partial time delay could induce synchronization transitions at \(\tau \) being around odd integer multiples of T / 2 for small \(p_{\mathrm{delay}}\) and at \(\tau \) being around integer multiples of T for large \(p_{\mathrm{delay}}\). Most interesting observation is that partial time delay could induce frequent synchronization transitions at \(\tau \) being around integer multiples of T / 2 for intermediate \(p_{\mathrm{delay}}\). Moreover, effect of rewiring probability on synchronization transitions induced by partial time delay has been discussed. It is found that synchronization transitions induced by partial time delay are robust to rewiring probability for large \(p_{\mathrm{delay}}\) under the three cases.  相似文献   

13.
The presence of a finite tangential velocity on a hydrodynamically slipping surface is known to reduce vorticity production in bluff body flows substantially while at the same time enhancing its convection downstream and into the wake. Here, we investigate the effect of hydrodynamic slippage on the convective heat transfer (scalar transport) from a heated isothermal circular cylinder placed in a uniform cross-flow of an incompressible fluid through analytical and simulation techniques. At low Reynolds (\({\textit{Re}}\ll 1\)) and high Péclet (\({\textit{Pe}}\gg 1\)) numbers, our theoretical analysis based on Oseen and thermal boundary layer equations allows for an explicit determination of the dependence of the thermal transport on the non-dimensional slip length \(l_s\). In this case, the surface-averaged Nusselt number, Nu transitions gradually between the asymptotic limits of \(Nu \sim {\textit{Pe}}^{1/3}\) and \(Nu \sim {\textit{Pe}}^{1/2}\) for no-slip (\(l_s \rightarrow 0\)) and shear-free (\(l_s \rightarrow \infty \)) boundaries, respectively. Boundary layer analysis also shows that the scaling \(Nu \sim {\textit{Pe}}^{1/2}\) holds for a shear-free cylinder surface in the asymptotic limit of \({\textit{Re}}\gg 1\) so that the corresponding heat transfer rate becomes independent of the fluid viscosity. At finite \({\textit{Re}}\), results from our two-dimensional simulations confirm the scaling \(Nu \sim {\textit{Pe}}^{1/2}\) for a shear-free boundary over the range \(0.1 \le {\textit{Re}}\le 10^3\) and \(0.1\le {\textit{Pr}}\le 10\). A gradual transition from the lower asymptotic limit corresponding to a no-slip surface, to the upper limit for a shear-free boundary, with \(l_s\), is observed in both the maximum slip velocity and the Nu. The local time-averaged Nusselt number \(Nu_{\theta }\) for a shear-free surface exceeds the one for a no-slip surface all along the cylinder boundary except over the downstream portion where unsteady separation and flow reversal lead to an appreciable rise in the local heat transfer rates, especially at high \({\textit{Re}}\) and Pr. At a Reynolds number of \(10^3\), the formation of secondary recirculating eddy pairs results in appearance of additional local maxima in \(Nu_{\theta }\) at locations that are in close proximity to the mean secondary stagnation points. As a consequence, Nu exhibits a non-monotonic variation with \(l_s\) increasing initially from its lowermost value for a no-slip surface and then decreasing before rising gradually toward the upper asymptotic limit for a shear-free cylinder. A non-monotonic dependence of the spanwise-averaged Nu on \(l_s\) is observed in three dimensions as well with the three-dimensional wake instabilities that appear at sufficiently low \(l_s\), strongly influencing the convective thermal transport from the cylinder. The analogy between heat transfer and single-component mass transfer implies that our results can directly be applied to determine the dependency of convective mass transfer of a single solute on hydrodynamic slip length in similar configurations through straightforward replacement of Nu and \({\textit{Pr}}\) with Sherwood and Schmidt numbers, respectively.  相似文献   

14.
This study focuses on the development of a novel analysis technique for determining the intraparticle diffusivity \((D_{\mathrm{S}})\) and fluid film mass transfer coefficient \((k_\mathrm{F})\) from a concentration history curve of a recycle fixed-bed reactor without using the linear driving force approximation and empirical equations for the estimation of \(k_\mathrm{F}\). The recycle fixed-bed method requires lesser amounts of working fluid for experiment purposes, which is an advantage over the usual fixed-bed method. Based on the characterization results of the concentration history curves, simulated by rigorous numerical calculations, a novel analysis technique was established. The \(D_{\mathrm{S}}\) value can be determined from the experimentally obtained time at which the concentration of the curve is minimal \((t_{C\mathrm{min}})\). The \(k_\mathrm{F}\) value can be determined from the \(D_{\mathrm{S}}\) value and Biot number (Bi), which can be estimated from the experimental ratio of the maximum concentration to the minimum concentration \((c_{\max }/c_{\min })\). The \(D_{\mathrm{S}}\) and \(k_\mathrm{F}\) values of phenol adsorption on an activated carbon material were determined experimentally using the proposed analysis method. This method enables the determination of reliable adsorption kinetic parameters through a simple and economical experiment. However, appropriate experimental data must be acquired under regulated experimental conditions, especially in the case of fluctuation of the concentration history curve.  相似文献   

15.
16.
Consider a weakly nonlinear CGL equation on the torus \(\mathbb {T}^d\):
$$\begin{aligned} u_t+i\Delta u=\epsilon [\mu (-1)^{m-1}\Delta ^{m} u+b|u|^{2p}u+ ic|u|^{2q}u]. \end{aligned}$$
(*)
Here \(u=u(t,x)\), \(x\in \mathbb {T}^d\), \(0<\epsilon <<1\), \(\mu \geqslant 0\), \(b,c\in \mathbb {R}\) and \(m,p,q\in \mathbb {N}\). Define \(I(u)=(I_{\mathbf {k}},\mathbf {k}\in \mathbb {Z}^d)\), where \(I_{\mathbf {k}}=v_{\mathbf {k}}\bar{v}_{\mathbf {k}}/2\) and \(v_{\mathbf {k}}\), \(\mathbf {k}\in \mathbb {Z}^d\), are the Fourier coefficients of the function \(u\) we give. Assume that the equation \((*)\) is well posed on time intervals of order \(\epsilon ^{-1}\) and its solutions have there a-priori bounds, independent of the small parameter. Let \(u(t,x)\) solve the equation \((*)\). If \(\epsilon \) is small enough, then for \(t\lesssim {\epsilon ^{-1}}\), the quantity \(I(u(t,x))\) can be well described by solutions of an effective equation:
$$\begin{aligned} u_t=\epsilon [\mu (-1)^{m-1}\Delta ^m u+ F(u)], \end{aligned}$$
where the term \(F(u)\) can be constructed through a kind of resonant averaging of the nonlinearity \(b|u|^{2p}+ ic|u|^{2q}u\).
  相似文献   

17.
Consider the planar Newtonian \((2N+1)\)-body problem, \(N\ge 1,\) with \(2N\) bodies of unit mass and one body of mass \(m\). Using the discrete symmetry due to the equal masses and reducing by the rotational symmetry, we show that solutions with the \(2N\) unit mass points at the vertices of two concentric regular \(N\)-gons and \(m\) at the centre at all times form invariant manifold. We study the regular \(2N\)-gon with central mass \(m\) relative equilibria within the dynamics on the invariant manifold described above. As \(m\) varies, we identify the bifurcations, relate our results to previous work and provide the spectral picture of the linearization at the relative equilibria.  相似文献   

18.
We consider positive classical solutions of
$$\begin{aligned} v_t=(v^{m-1}v_x)_x, \qquad x\in {\mathbb {R}}, \ t>0, \qquad (\star ) \end{aligned}$$
in the super-fast diffusion range \(m<-1\). Our main interest is in smooth positive initial data \(v_0=v(\cdot ,0)\) which decay as \(x\rightarrow +\infty \), but which are possibly unbounded as \(x\rightarrow -\infty \), having in mind monotonically decreasing data as prototypes. It is firstly proved that if \(v_0\) decays sufficiently fast only in one direction by satisfying
$$\begin{aligned} v_0(x) \le cx^{-\beta } \qquad \text{ for } \text{ all } ~x>0 \quad \hbox { with some }\quad \beta >\frac{2}{1-m} \end{aligned}$$
and some \(c>0\), then the so-called proper solution of (\(\star \)) vanishes identically in \({\mathbb {R}}\times (0,\infty )\), and accordingly no positive classical solution exists in any time interval in this case. Complemented by some sufficient criteria for solutions to remain positive either locally or globally in time, this condition for instantaneous extinction is shown to be optimal at least with respect to algebraic decay of the initial data. This partially extends some known nonexistence results for (\(\star \)) (Daskalopoulos and Del Pino in Arch Rat Mech Anal 137(4):363–380, 1997) in that it does not require any knowledge on the behavior of \(v_0(x)\) for \(x<0\). Next focusing on the phenomenon of extinction in finite time, we show that in this respect a mass influx from \(x=-\infty \) can interact with mass loss at \(x=+\infty \) in a nontrivial manner. Namely, we shall detect examples of monotone initial data, with critical decay as \(x\rightarrow +\infty \) and exponential growth as \(x\rightarrow -\infty \), that lead to solutions of (\(\star \)) which become extinct at a finite positive time, but which have empty extinction sets. This is in sharp contrast to known extinction mechanisms which are such that the corresponding extinction sets coincide with all of \({\mathbb {R}}\).
  相似文献   

19.
We consider a family of linearly viscoelastic shells with thickness \(2\varepsilon\), clamped along their entire lateral face, all having the same middle surface \(S=\boldsymbol{\theta}(\bar{\omega})\subset \mathbb{R}^{3}\), where \(\omega\subset\mathbb{R}^{2}\) is a bounded and connected open set with a Lipschitz-continuous boundary \(\gamma\). We make an essential geometrical assumption on the middle surface \(S\), which is satisfied if \(\gamma\) and \(\boldsymbol{\theta}\) are smooth enough and \(S\) is uniformly elliptic. We show that, if the applied body force density is \(O(1)\) with respect to \(\varepsilon\) and surface tractions density is \(O(\varepsilon)\), the solution of the scaled variational problem in curvilinear coordinates, \(\boldsymbol{u}( \varepsilon)\), defined over the fixed domain \(\varOmega=\omega\times (-1,1)\) for each \(t\in[0,T]\), converges to a limit \(\boldsymbol{u}\) with \(u_{\alpha}(\varepsilon)\rightarrow u_{\alpha}\) in \(W^{1,2}(0,T,H ^{1}(\varOmega))\) and \(u_{3}(\varepsilon)\rightarrow u_{3}\) in \(W^{1,2}(0,T,L^{2}(\varOmega))\) as \(\varepsilon\to0\). Moreover, we prove that this limit is independent of the transverse variable. Furthermore, the average \(\bar{\boldsymbol{u}}= \frac{1}{2}\int_{-1}^{1} \boldsymbol{u}dx_{3}\), which belongs to the space \(W^{1,2}(0,T, V_{M}( \omega))\), where
$$V_{M}(\omega)=H^{1}_{0}(\omega)\times H^{1}_{0}(\omega)\times L ^{2}(\omega), $$
satisfies what we have identified as (scaled) two-dimensional equations of a viscoelastic membrane elliptic shell, which includes a long-term memory that takes into account previous deformations. We finally provide convergence results which justify those equations.
  相似文献   

20.
The first part of this paper is a general approach towards chaotic dynamics for a continuous map \(f:X\supset M\rightarrow X\) which employs the fixed point index and continuation. The second part deals with the differential equation
$$\begin{aligned} x'(t)=-\alpha \,x(t-d_{{\varDelta }}(x_t)). \end{aligned}$$
with state-dependent delay. For a suitable parameter \(\alpha \) close to \(5\pi /2\) we construct a delay functional \(d_{{\varDelta }}\), constant near the origin, so that the previous equation has a homoclinic solution, \(h(t)\rightarrow 0\) as \(t\rightarrow \pm \infty \), with certain regularity properties of the linearization of the semiflow along the flowline \(t\mapsto h_t\). The third part applies the method from the beginning to a return map which describes solution behaviour close to the homoclinic loop, and yields the existence of chaotic motion.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号