首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper deals with the analysis of Hamiltonian Hopf as well as saddle-center bifurcations in 4-DOF systems defined by perturbed isotropic oscillators (1:1:1:1 resonance), in the presence of two quadratic symmetries Ξ and L 1. When we normalize the system with respect to the quadratic part of the energy and carry out a reduction with respect to a three-torus group we end up with a 1-DOF system with several parameters on the thrice reduced phase space. Then, we focus our analysis on the evolution of relative equilibria around singular points of this reduced phase space. In particular, dealing with the Hamiltonian Hopf bifurcation the ‘geometric approach’ is used, following the steps set up by one of the authors in the context of 3-DOF systems. In order to see the interplay between integrals and physical parameters in the analysis of bifurcations, we consider as a perturbation a one-parameter family, which in particular includes one of the classical Stark–Zeeman models (parallel case) in three dimensions.  相似文献   

2.
The role of disease in ecological systems is a very important issue from both mathematical and ecological points of view. This paper deals with the qualitative analysis of a prey-dependent predator – prey system in which a disease is spreading among the prey species only. We have analysed the behaviour of the system around each equilibrium and obtained conditions for global stability of the system around an equilibrium by using suitable Lypunov functions. We have also worked out the region of parametric space under which the system enters a Hopf bifurcation and a transcritical bifurcation but does not experience either saddle-node bifurcations or pitchfork bifurcations around the disease-free equilibrium E 2. Finally, we have given an example of a real ecological situation with experimental data simulations.  相似文献   

3.
Summary. {Equilibrium solutions of systems of parameterized ordinary differential equations \dot x = f(x, α) , x ∈ R n , α∈ R m can be characterized by their parametric distance to manifolds of critical solutions at which the behavior of the system changes qualitatively. Critical points of interest are bifurcation points and points at which state variable constraints or output constraints are violated. We use normal vectors on manifolds of critical points to measure the distance between these manifolds and equilibrium solutions as suggested in I. Dobson [J. Nonlinear Sci., 3:307-327, 1993], where systems of equations to calculate normal vectors on codimension-1 bifurcations were presented. We present a scheme to derive systems of equations to calculate normal vectors on manifolds of critical points which (i) generalizes to bifurcations of arbitrary codimension, (ii) can be applied to state variable constraints and output constraints, (iii) implies that the normal vector defining system of equations is of size c 1 n+ c 2 m+ c 3 , c i ∈ R , i.e., no bilinear terms nm or higher-order terms occur, (iv) reduces the number of equations for normal vectors on Hopf bifurcation manifolds compared to previous work, and (v) simplifies the proof of regularity of the normal vector system. As an application of this scheme, we present systems of equations for normal vectors to manifolds of output/state variable constraints, to manifolds of saddle-node, Hopf, cusp, and isola bifurcations, and we give illustrative examples of their use in engineering applications.} Received September 27, 2000; accepted December 10, 2001 Online publication March 11, 2002 Communicated by Y. G. Kevrekidis Communicated by Y. G. Kevrekidis rid="  相似文献   

4.
It is well-known that on a versal deformation of the Takens–Bogdanov bifurcation is possible to find dynamical systems that undergo saddle-node, Hopf, and homoclinic bifurcations. In this document a nonlinear control system in the plane is considered, whose nominal vector field has a double-zero eigenvalue, and then the idea is to find under which conditions there exists a scalar control law such that be possible establish a priori, that the closed-loop system undergoes any of the three bifurcations: saddle-node, Hopf or homoclinic. We will say then that such system undergoes the controllable Takens–Bogdanov bifurcation. Applications of this result to the averaged forced van der Pol oscillator, a population dynamics, and adaptive control systems are discussed.  相似文献   

5.
In studying small limit cycles of finite‐dimensional systems, one of the central problem is the computation of focus quantities. In practice, the computation is a challenging problem even for some simple low‐dimensional systems. This paper is devoted to the computation of focus quantities of all orders and to the study of Hopf bifurcations in some chaotic systems. A recursive formula for computing focus quantities is presented for a K + 2‐dimensional system. The formula is a generalization of previous results on low‐dimensional systems with K = 0 and K = 1. For a four‐dimensional hyper‐chaotic system, according to the sign of the first focus quantity, we prove that the simple Hopf bifurcation of the system is supercritical. For a five‐dimensional chaotic system with four equilibria of Hopf type, according to the signs of the first focus quantities, we prove that the simple Hopf bifurcations of the system are subcritical.  相似文献   

6.
A graph, G, is called uniquely Hamiltonian if it contains exactly one Hamilton cycle. We show that if G=(V, E) is uniquely Hamiltonian then Where #(G)=1 if G has even number of vertices and 2 if G has odd number of vertices. It follows that every n-vertex uniquely Hamiltonian graph contains a vertex whose degree is at most c log2n+2 where c=(log23−1)−1≈1.71 thereby improving a bound given by Bondy and Jackson [3].  相似文献   

7.
Bifurcations for a predator-prey system with two delays   总被引:2,自引:0,他引:2  
In this paper, a predator-prey system with two delays is investigated. By choosing the sum τ of two delays as a bifurcation parameter, we show that Hopf bifurcations can occur as τ crosses some critical values. By deriving the equation describing the flow on the center manifold, we can determine the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions. In addition, special attention is paid to the global continuation of local Hopf bifurcations. Using a global Hopf bifurcation result of [J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc. 350 (1998) 4799-4838], we may show the global existence of periodic solutions.  相似文献   

8.
Consider the lattice whose elements are the subsets of the set of positive integers not greater than n ordered by inclusion. The Hasse diagram of this lattice is isomorphic to the n-dimensional hypercube. It is trivial that this graph is Hamiltonian. Let be a Hamiltonian path. We say it is monotone, if for every i, either (a) all subsets of S i appear among S 1,...,S i − 1, or (b) only one (say S) does not, furthermore S i + 1 = S. Trotter conjectured that if n is sufficiently large, then there are no monotone Hamiltonian paths in the n-cube. He also made a stronger conjecture that states that there is no path with the monotone property that covers all the sets of size at most three. In this paper we disprove this strong conjecture by explicitly constructing a monotone path covering all the 3-sets.  相似文献   

9.
We consider three‐dimensional inviscid‐irrotational flow in a two‐layer fluid under the effects of gravity and surface tension, where the upper fluid is bounded above by a rigid lid and the lower fluid is bounded below by a flat bottom. We use a spatial dynamics approach and formulate the steady Euler equations as an infinite‐dimensional Hamiltonian system, where an unbounded spatial direction x is considered as a time‐like coordinate. In addition, we consider wave motions that are periodic in another direction z. By analyzing the dispersion relation, we detect several bifurcation scenarios, two of which we study further: a type of 00(is)(iκ0) resonance and a Hamiltonian Hopf bifurcation. The bifurcations are investigated by performing a center‐manifold reduction, which yields a finite‐dimensional Hamiltonian system. For this finite‐dimensional system, we establish the existence of periodic and homoclinic orbits, which correspond to, respectively, doubly periodic travelling waves and oblique travelling waves with a dark or bright solitary wave profile in the x direction. The former are obtained using a variational Lyapunov‐Schmidt reduction and the latter by first applying a normal form transformation and then studying the resulting canonical system of equations.  相似文献   

10.
Distinct transitions of firing activities from bursting to spiking induced by the depolarizing current I are explored near the Hopf bifurcations in the Chay neuronal system. The period-1 “circle/homoclinic” bursting at one rest state makes a transition slowly to repetitive spiking with the parameter I increasing. However, the “Hopf/homoclinic” bursting via a “fold/homoclinic” hysteresis loop at another rest state may transit to continuous spiking abruptly by increasing I.  相似文献   

11.
In this paper we study the number of limit cycles appearing in Hopf bifurcations of piecewise planar Hamiltonian systems. For the case that the Hamiltonian function is a piecewise polynomials of a general form we obtain lower and upper bounds of the number of limit cycles near the origin respectively. For some systems of special form we obtain the Hopf cyclicity.  相似文献   

12.
In this paper, a three-species predator-prey system with two delays is investigated. By choosing the sum τ of two delays as a bifurcation parameter, we first show that Hopf bifurcation at the positive equilibrium of the system can occur as τ crosses some critical values. Second, we obtain the formulae determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions by using the normal form theory and center manifold theorem. Finally, numerical simulations supporting our theoretical results are also included.  相似文献   

13.
We consider a delayed predator-prey system. We first consider the existence of local Hopf bifurcations, and then derive explicit formulas which enable us to determine the stability and the direction of periodic solutions bifurcating from Hopf bifurcations, using the normal form theory and center manifold argument. Special attention is paid to the global existence of periodic solutions bifurcating from Hopf bifurcations. By using a global Hopf bifurcation result due to Wu [Trans. Amer. Math. Soc. 350 (1998) 4799], we show that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of delay. Finally, several numerical simulations supporting the theoretical analysis are also given.  相似文献   

14.
Summary Engineering and physical systems are often modeled as nonlinear differential equations with a vector λ of parameters and operated at a stable equilibrium. However, as the parameters λ vary from some nominal value λ0, the stability of the equilibrium can be lost in a saddle-node or Hopf bifurcation. The spatial relation in parameter space of λ0 to the critical set of parameters at which the stable equilibrium bifurcates determines the robustness of the system stability to parameter variations and is important in applications. We propose computing a parameter vector λ* at which the stable equilibrium bifurcates which is locally closest in parameter space to the nominal parameters λ0. Iterative and direct methods for computing these locally closest bifurcations are described. The methods are extensions of standard, one-parameter methods of computing bifurcations and are based on formulas for the normal vector to hypersurfaces of the bifurcation set. Conditions on the hypersurface curvature are given to ensure the local convergence of the iterative method and the regularity of solutions of the direct method. Formulas are derived for the curvature of the saddle node bifurcation set. The methods are extended to transcritical and pitchfork bifurcations and parametrized maps, and the sensitivity to λ0 of the distance to a closest bifurcation is derived. The application of the methods is illustrated by computing the proximity to the closest voltage collapse instability of a simple electric power system.  相似文献   

15.
Based on analyzing the properties of the Hamiltonian of a pseudorelativistic system Zn of n identical particles, we establish that for actual (short-range) interaction potentials, there exists an infinite sequence of integers ns, s = 1, 2, …, such that the system is stable and that sup s ns+1 ns1 < + ∞. For a stable system Zn, we show that the Hamiltonian of relative motion of such a system has a nonempty discrete spectrum for certain fixed values of the total particle momentum. We obtain these results taking the permutation symmetry (Pauli exclusion principle) fully into account for both fermion and boson systems for any value of the particle spin. Similar results previously proved for pseudorelativistic systems did not take permutation symmetry into account and hence had no physical meaning. For nonrelativistic systems, these results (except the estimate for ns+1 ns1 ) were obtained taking permutation symmetry into account but under certain assumptions whose validity for actual systems has not yet been established. Our main theorem also holds for nonrelativistic systems, which is a substantial improvement of the existing result. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 157, No. 1, pp. 116–129, October, 2008.  相似文献   

16.
Using a Melnikov-type technique, we study codimension-two bifurcations called the Bogdanov-Takens bifurcations for subharmonics in periodic perturbations of planar Hamiltonian systems. We give a criterion for the occurrence of the Bogdanov-Takens bifurcations and present approximate expressions for saddle-node, Hopf and homoclinic bifurcation sets near the Bogdanov-Takens bifurcation points. We illustrate the theoretical result with an example.  相似文献   

17.
We characterize the values of the parameters for which a zero‐Hopf equilibrium point takes place at the singular points, namely, O (the origin), P+, and P? in the FitzHugh–Nagumo system. We find two two‐parameter families of the FitzHugh–Nagumo system for which the equilibrium point at the origin is a zero‐Hopf equilibrium. For these two families, we prove the existence of a periodic orbit bifurcating from the zero‐Hopf equilibrium point O. We prove that there exist three two‐parameter families of the FitzHugh–Nagumo system for which the equilibrium point at P+ and at P? is a zero‐Hopf equilibrium point. For one of these families, we prove the existence of one, two, or three periodic orbits starting at P+ and P?. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
1. PreliminaryIt is well known that{1] a 8ymPlectic form is invariant along the trajectory of a Hamilto-nian system. Based on this fundamental property, certain techniques have been developed.The purpose of this paper is to extend such an approach to a wider class of dynamic systeIns,namely, genera1ized Hamiltonian systems. Our purpose is to investigate a class of dynaInicsystems, which possess a certain "geometric structure".Deflnition 1.1[1'2]. Let M be a tIlallifo1d. w E fl'(M) is call…  相似文献   

19.
Rubber rolling over a sphere   总被引:2,自引:2,他引:0  
“Rubber” coated bodies rolling over a surface satisfy a no-twist condition in addition to the no slip condition satisfied by “marble” coated bodies [1]. Rubber rolling has an interesting differential geometric appeal because the geodesic curvatures of the curves on the surfaces at corresponding points are equal. The associated distribution in the 5 dimensional configuration space has 2–3–5 growth (these distributions were first studied by Cartan; he showed that the maximal symmetries occurs for rubber rolling of spheres with 3:1 diameters ratio and materialize the exceptional group G 2). The 2–3–5 nonholonomic geometries are classified in a companion paper [2] via Cartan’s equivalence method [3]. Rubber rolling of a convex body over a sphere defines a generalized Chaplygin system [4–8] with SO(3) symmetry group, total space Q = SO(3) × S 2 and base S 2, that can be reduced to an almost Hamiltonian system in T*S 2 with a non-closed 2-form ωNH. In this paper we present some basic results on the sphere-sphere problem: a dynamically asymmetric but balanced sphere of radius b (unequal moments of inertia I j but with center of gravity at the geometric center), rubber rolling over another sphere of radius a. In this example ωNH is conformally symplectic [9]: the reduced system becomes Hamiltonian after a coordinate dependent change of time. In particular there is an invariant measure, whose density is the determinant of the reduced Legendre transform, to the power p = 1/2(b/a − 1). Using sphero-conical coordinates we verify the result by Borisov and Mamaev [10] that the system is integrable for p = −1/2 (ball over a plane). They have found another integrable case [11] corresponding to p = −3/2 (rolling ball with twice the radius of a fixed internal ball). Strikingly, a different set of sphero-conical coordinates separates the Hamiltonian in this case. No other integrable cases with different I j are known.   相似文献   

20.
In this paper, we consider a three‐dimensional viral model with delay. We first investigate the linear stability and the existence of a Hopf bifurcation. It is shown that Hopf bifurcations occur as the delay τ passes through a sequence of critical values. Then, using the normal form theory and center manifold reduction, we derive the explicit formulaes that determine the stability, the direction, and the period of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the validity of the main results. Finally, some brief conclusions are given. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号