首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper deals with an initial-boundary value problem for the system $$\left\{ \begin{array}{llll} n_t + u\cdot\nabla n &=& \Delta n -\nabla \cdot (n\chi(c)\nabla c), \quad\quad & x\in\Omega, \, t > 0,\\ c_t + u\cdot\nabla c &=& \Delta c-nf(c), \quad\quad & x\in\Omega, \, t > 0,\\ u_t + \kappa (u\cdot \nabla) u &=& \Delta u + \nabla P + n \nabla\phi, \qquad & x\in\Omega, \, t > 0,\\ \nabla \cdot u &=& 0, \qquad & x\in\Omega, \, t > 0,\end{array} \right.$$ which has been proposed as a model for the spatio-temporal evolution of populations of swimming aerobic bacteria. It is known that in bounded convex domains ${\Omega \subset \mathbb{R}^2}$ and under appropriate assumptions on the parameter functions χ, f and ?, for each ${\kappa\in\mathbb{R}}$ and all sufficiently smooth initial data this problem possesses a unique global-in-time classical solution. The present work asserts that this solution stabilizes to the spatially uniform equilibrium ${(\overline{n_0},0,0)}$ , where ${\overline{n_0}:=\frac{1}{|\Omega|} \int_\Omega n(x,0)\,{\rm d}x}$ , in the sense that as t→∞, $$n(\cdot,t) \to \overline{n_0}, \qquad c(\cdot,t) \to 0 \qquad \text{and}\qquad u(\cdot,t) \to 0$$ hold with respect to the norm in ${L^\infty(\Omega)}$ .  相似文献   

2.
In this paper we study the asymptotic behavior of solutions of the following nonautonomous wave equation with nonlinear dissipation.
$\left\{\begin{array}{ll} u_{tt}+\vert u_{t}\vert^{\alpha}u_{t}-\Delta u +f(u)=g(t,x),\quad{\rm in}\,\mathbb{R}_{+}\times\Omega,\\ \qquad\qquad u(t,x)=0,\quad\, {\rm on}\,\mathbb{R}_{+}\times\partial\Omega,\end{array}\right.$
where f is an analytic function, α is a small positive real and g(t, ·) tends to 0 sufficiently fast in L 2(Ω) as t tends to ∞.
We also obtain a general convergence result and the rate of decay of solutions for a class of second order ODE containing as a special case
$\left\{\begin{array}{ll} \ddot{U}(t)+\Vert\dot{U}(t)\Vert^{\alpha}\dot{U}(t)+\nabla F(U(t))=g(t),\quad t \in \mathbb{R}_+,\\ \qquad U(0)=U_{0}\,\in \mathbb{R}^{N},\quad\dot{U}(0)=U_{1}\in \mathbb{R}^{N}. \end{array}\right.$
  相似文献   

3.
We study the regularity of the extremal solution of the semilinear biharmonic equation ${{\Delta^2} u=\frac{\lambda}{(1-u)^2}}We study the regularity of the extremal solution of the semilinear biharmonic equation D2 u=\fracl(1-u)2{{\Delta^2} u=\frac{\lambda}{(1-u)^2}}, which models a simple micro-electromechanical system (MEMS) device on a ball B ì \mathbbRN{B\subset{\mathbb{R}}^N}, under Dirichlet boundary conditions u=?n u=0{u=\partial_\nu u=0} on ?B{\partial B}. We complete here the results of Lin and Yang [14] regarding the identification of a “pull-in voltage” λ* > 0 such that a stable classical solution u λ with 0 < u λ < 1 exists for l ? (0,l*){\lambda\in (0,\lambda^*)}, while there is none of any kind when λ > λ*. Our main result asserts that the extremal solution ul*{u_{\lambda^*}} is regular (supB ul* < 1 ){({\rm sup}_B u_{\lambda^*} <1 )} provided N \leqq 8{N \leqq 8} while ul*{u_{\lambda^*}} is singular (supB ul* = 1){({\rm sup}_B u_{\lambda^*} =1)} for N \geqq 9{N \geqq 9}, in which case 1-C0|x|4/3 \leqq ul* (x) \leqq 1-|x|4/3{1-C_0|x|^{4/3} \leqq u_{\lambda^*} (x) \leqq 1-|x|^{4/3}} on the unit ball, where C0:=(\fracl*[`(l)])\frac13{C_0:=\left(\frac{\lambda^*}{\overline{\lambda}}\right)^\frac{1}{3}} and [`(l)]: = \frac89(N-\frac23)(N- \frac83){\bar{\lambda}:= \frac{8}{9}\left(N-\frac{2}{3}\right)\left(N- \frac{8}{3}\right)}.  相似文献   

4.
In this paper we establish, using variational methods, the existence and multiplicity of weak solutions for a general class of quasilinear problems involving \(p(\cdot )\)-Laplace type operators, with Dirichlet boundary conditions involving variable exponents without Ambrosetti and Rabinowitz (A-R) type growth conditions, namely
$$\begin{aligned} \left\{ \begin{array}{rcll} -{\text {div}}(a(|\nabla u|^{p(x)})|\nabla u|^{p(x)-2}\nabla u)&{}=&{}\lambda f(x,u) &{} \text{ in } \Omega ,\\ u&{}=&{}0 &{} \text{ on } \partial \Omega . \end{array} \right. \end{aligned}$$
By different types of versions of the Mountain Pass Theorem with Cerami condition, as well as, the Fountain and Dual Theorem with Cerami condition, we obtain some existence of weak solutions for the above problem under some considerations. Moreover, we show that the problem treated has at least one nontrivial solution for any parameter \(\lambda >0\) small enough, and also that the solution blows up, in the Sobolev norm, as \(\lambda \rightarrow 0^{+}.\) Finally, by imposing additional hypotheses on the nonlinearity \(f(x,\cdot ),\) we get the existence of infinitely many weak solutions by using the Genus Theory introduced by Krasnoselskii.
  相似文献   

5.
6.
In this paper, we consider the following PDE involving two Sobolev–Hardy critical exponents,
$ \label{0.1}\left\{\begin{aligned}& \Delta u + \lambda\frac{u^{2^*(s_1)-1}}{|x|^{s_1}} + \frac{u^{2^*(s_2)-1}}{|x|^{s_2}} =0 \quad \rm {in}\,\,\Omega,\quad\quad\quad(0.1)\\ & u=0 \quad {\rm on }\,\,\Omega, \end{aligned} \right.$ \label{0.1}\left\{\begin{aligned}& \Delta u + \lambda\frac{u^{2^*(s_1)-1}}{|x|^{s_1}} + \frac{u^{2^*(s_2)-1}}{|x|^{s_2}} =0 \quad \rm {in}\,\,\Omega,\quad\quad\quad(0.1)\\ & u=0 \quad {\rm on }\,\,\Omega, \end{aligned} \right.  相似文献   

7.
Let Ω be a bounded smooth domain in ${{\bf R}^N, N\geqq 3}Let Ω be a bounded smooth domain in RN, N\geqq 3{{\bf R}^N, N\geqq 3}, and Da1,2(W){D_a^{1,2}(\Omega)} be the completion of C0(W){C_0^\infty(\Omega)} with respect to the norm:
||u||a2W |x|-2a|?u|2dx.||u||_a^2=\int_\Omega |x|^{-2a}|\nabla u|^2{d}x.  相似文献   

8.
We propose a general framework for the study of L 1 contractive semigroups of solutions to conservation laws with discontinuous flux:
$ u_t + \mathfrak{f}(x,u)_x=0, \qquad \mathfrak{f}(x,u)= \left\{{ll} f^l(u),& x < 0,\\ f^r(u), & x > 0, \right.\quad\quad\quad (\rm CL) $ u_t + \mathfrak{f}(x,u)_x=0, \qquad \mathfrak{f}(x,u)= \left\{\begin{array}{ll} f^l(u),& x < 0,\\ f^r(u), & x > 0, \end{array} \right.\quad\quad\quad (\rm CL)  相似文献   

9.
In this paper we study the Dirichlet problem
$\left\{\begin{array}{lll}-\Delta_p{u} = \sigma |u|^{p-2}u + \omega \quad {\rm in}\;\Omega,\\ u = 0 \qquad\quad\qquad\quad\;\qquad{\rm on}\;\partial\Omega,\end{array}\right.$
, where σ and ω are nonnegative Borel measures, and \({\Delta_p{u} = \nabla \cdot (\nabla{u} \, |\nabla{u}|^{p-2})}\) is the p-Laplacian. Here \({\Omega \subseteq \mathbf{R}^n}\) is either a bounded domain, or the entire space. Our main estimates concern optimal pointwise bounds of solutions in terms of two local Wolff’s potentials, under minimal regularity assumed on σ and ω. In addition, analogous results for equations modeled by the k-Hessian in place of the p-Laplacian will be discussed.
  相似文献   

10.
This study considers the quasilinear elliptic equation with a damping term,
$$\begin{aligned} \text {div}(D(u)\nabla u) + \frac{k(|{\mathbf {x}}|)}{|{\mathbf {x}}|}\,{\mathbf {x}}\cdot (D(u)\nabla u) + \omega ^2\big (|u|^{p-2}u + |u|^{q-2}u\big ) = 0, \end{aligned}$$
where \({\mathbf {x}}\) is an N-dimensional vector in \(\big \{{\mathbf {x}} \in \mathbb {R}^N: |{\mathbf {x}}| \ge \alpha \big \}\) for some \(\alpha > 0\) and \(N \in {\mathbb {N}}\setminus \{1\}\); \(D(u) = |\nabla u|^{p-2} + |\nabla u|^{q-2}\) with \(1 < q \le p\); k is a nonnegative and locally integrable function on \([\alpha ,\infty )\); and \(\omega \) is a positive constant. A necessary and sufficient condition is given for all radially symmetric solutions to converge to zero as \(|{\mathbf {x}}|\rightarrow \infty \). Our necessary and sufficient condition is expressed by an improper integral related to the damping coefficient k. The case that k is a power function is explained in detail.
  相似文献   

11.
Let Ω be a bounded smooth domain in \({{R}^N, N \geqq 2}\), and let us denote by d(x) the distance function d(x, ?Ω). We study a class of singular Hamilton–Jacobi equations, arising from stochastic control problems, whose simplest model is
$ - \alpha \Delta u+ u + \frac{\nabla u \cdot B (x)}{d (x)}+ c(x) |\nabla u|^2=f (x) \quad {\rm in}\,\Omega, $
where f belongs to \({W^{1,\infty}_{\rm loc} (\Omega)}\) and is (possibly) singular at \({\partial \Omega, c\in W^{1,\infty} (\Omega)}\) (with no sign condition) and the field \({B\in W^{1,\infty} (\Omega)^N}\) has an outward direction and satisfies \({B\cdot \nu\geqq \alpha}\) at ?Ω (ν is the outward normal). Despite the singularity in the equation, we prove gradient bounds up to the boundary and the existence of a (globally) Lipschitz solution. We show that in some cases this is the unique bounded solution. We also discuss the stability of such estimates with respect to α, as α vanishes, obtaining Lipschitz solutions for first order problems with similar features. The main tool is a refined weighted version of the classical Bernstein method to get gradient bounds; the key role is played here by the orthogonal transport component of the Hamiltonian.
  相似文献   

12.
The paper deals with positive solutions of the initial-boundary value problem for with zero Dirichlet data in a smoothly bounded domain . Here is positive on (0,∞) with f(0) = 0, and λ1 is exactly the first Dirichlet eigenvalue of −Δ in Ω. In this setting, (*) may possess oscillating solutions in presence of a sufficiently strong degeneracy. More precisely, writing , it is shown that if then there exist global classical solutions of (*) satisfying and . Under the additional structural assumption , s > 0, this result can be sharpened: If then (*) has a global solution with its ω-limit set being the ordered arc that consists of all nonnegative multiples of the principal Laplacian eigenfunction. On the other hand, under the above additional assumption the opposite condition ensures that all solutions of (*) will stabilize to a single equilibrium.   相似文献   

13.
Existence of a Solution “in the Large” for Ocean Dynamics Equations   总被引:1,自引:0,他引:1  
For the system of equations describing the large-scale ocean dynamics, an existence and uniqueness theorem is proved “in the large”. This system is obtained from the 3D Navier–Stokes equations by changing the equation for the vertical velocity component u 3 under the assumption of smallness of a domain in z-direction, and a nonlinear equation for the density function ρ is added. More precisely, it is proved that for an arbitrary time interval [0, T], any viscosity coefficients and any initial conditions
a weak solution exists and is unique and and the norms are continuous in t. The work was carried out under partial support of Russian Foundation for Basic Research (project 05-01-00864).  相似文献   

14.
We prove a regularity result for the anisotropic linear elasticity equation ${P u := {\rm div} \left( \boldmath\mathsf{C} \cdot \nabla u\right) = f}We prove a regularity result for the anisotropic linear elasticity equationP u : = div ( C ·?u) = f{P u := {\rm div} \left( \boldmath\mathsf{C} \cdot \nabla u\right) = f} , with mixed (displacement and traction) boundary conditions on a curved polyhedral domain W ì \mathbbR3{\Omega \subset \mathbb{R}^3} in weighted Sobolev spaces Km+1a+1(W){\mathcal {K}^{m+1}_{a+1}(\Omega)} , for which the weight is given by the distance to the set of edges. In particular, we show that there is no loss of Kma{\mathcal {K}^{m}_{a}} -regularity. Our curved polyhedral domains are allowed to have cracks. We establish a well-posedness result when there are no neighboring traction boundary conditions and |a| < η, for some small η > 0 that depends on P, on the boundary conditions, and on the domain Ω. Our results extend to other strongly elliptic systems and higher dimensions.  相似文献   

15.
In this paper we study the existence and concentration behaviors of positive solutions to the Kirchhoff type equations $$- \varepsilon^2 M \left(\varepsilon^{2-N}\!\!\int_{\mathbf{R}^N}|\nabla u|^2\,\mathrm{d} x \right) \Delta u \!+\! V(x) u \!=\! f(u) \quad{\rm in}\ \mathbf{R}^N, \quad u \!\in\! H^1(\mathbf{R}^N), \ N \!\geqq\!1,$$ where M and V are continuous functions. Under suitable conditions on M and general conditions on f, we construct a family of positive solutions \({(u_\varepsilon)_{\varepsilon \in (0,\tilde{\varepsilon}]}}\) which concentrates at a local minimum of V after extracting a subsequence (ε k ).  相似文献   

16.
We prove that, if ${u : \Omega \subset \mathbb{R}^n \to \mathbb{R}^N}We prove that, if u : W ì \mathbbRn ? \mathbbRN{u : \Omega \subset \mathbb{R}^n \to \mathbb{R}^N} is a solution to the Dirichlet variational problem
minwòW F(x, w, Dw) dx     subject  to     w o u0  on  ?W,\mathop {\rm min}\limits_{w}\int_{\Omega} F(x, w, Dw)\,{\rm d}x \quad {\rm subject \, to} \quad w \equiv u_0\; {\rm on}\;\partial \Omega,  相似文献   

17.
1 IntroductionandLemmasTherearemanyresultsaboutexistence (globalorlocal)andasymptoticbehaviorofsolutionsforreaction_diffusionequations[1- 9].Bytheaidsofresults[2 ,3]ofequation u/ t=Δu-λ|u|γ- 1uwithinitial_boundaryvalues,paper [4 ]studiedtheproblemof u/ t=Δu-λ|eβtu|γ- …  相似文献   

18.
This paper is motivated by the study of a version of the so-called Schrödinger–Poisson–Slater problem: $- \Delta u + \omega u + \lambda \left( u^2 \star \frac{1}{|x|} \right) u=|u|^{p-2}u,$ where ${u \in H^{1}(\mathbb {R}^3)}This paper is motivated by the study of a version of the so-called Schr?dinger–Poisson–Slater problem:
- Du + wu + l( u2 *\frac1|x| ) u=|u|p-2u,- \Delta u + \omega u + \lambda \left( u^2 \star \frac{1}{|x|} \right) u=|u|^{p-2}u,  相似文献   

19.
In this paper, first a class of fractional differential equations are obtained by using the fractional variational principles. We find a fractional Lagrangian L(x(t), where a c D t α x(t)) and 0<α<1, such that the following is the corresponding Euler–Lagrange
(1)
At last, exact solutions for some Euler–Lagrange equations are presented. In particular, we consider the following equations
(2)
(3)
where g(t) and f(t) are suitable functions. D. Baleanu is on leave of absence from Institute of Space Sciences, P.O. BOX MG-23, 76900 Magurele-Bucharest, Romania. e-mail: baleanu@venus.nipne.ro.  相似文献   

20.
We establish the existence and uniqueness results over the semi-infinite interval [0,∞) for a class of nonlinear third order ordinary differential equations of the form
lf"¢( h) + f( h)f"( h) - ( f¢( h) )2 - Mf¢( h)    + C(C + M ) = 0,f( 0 ) = s ,       f¢( 0 ) = c,       limh? ¥ f¢( h) = C.\begin{array}{l}f'( \eta) + f( \eta)f'( \eta) - ( f'( \eta) )^{2} - Mf'( \eta)\\[6pt]\quad {}+ C(C + M ) = 0,\\[6pt]f( 0 ) = s ,\qquad f'( 0 ) = \chi ,\qquad \displaystyle\lim\limits_{\eta \to \infty} f'( \eta) = C.\end{array}  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号