共查询到11条相似文献,搜索用时 62 毫秒
1.
柔性压力传感器是一种能够感知或监测外界压力变化的柔性电子器件,具备灵敏度高、形变灵活、制备工艺简单等特点,在可穿戴式电子产品、健康医疗、软体机器人、人机交互等新兴领域具有广泛而重要的应用。灵敏度、检测极限、响应时间与循环工作稳定性是柔性压力传感的核心性能指标,微纳结构的引入对提高柔性压力传感器综合性能具有重要作用。本文根据微纳结构的主要类型介绍了基于微纳结构的柔性压力传感器的最新研究进展,包括各种不同形貌微纳结构对柔性压力传感器性能的影响及其在柔性压力传感器中的应用,并对柔性压力传感器未来的发展提出展望。 相似文献
2.
近年来,随着互联网和人工智能的发展和普及,轻薄便捷、电子性能优异的柔性压力传感器作为可穿戴电子设备的核心器件,拥有了越来越广阔的市场。柔性压力传感器具有灵活柔韧、可折叠、传感性能优异等优点,因而在电子皮肤、运动检测、医疗监测和人机界面等方面已引起广泛的关注。构筑微纳结构是提高压力传感器灵敏度和传感性能的关键。基于此,本文首先总结了高灵敏度压力传感器的传感机制(压阻式、电容式、压电式和摩擦电式)和关键性能参数(灵敏度、压力检测范围、检测限、响应/恢复时间、循环稳定性和线性度等),然后归纳了利用基材构建表面微纳结构(微凸结构、荆棘结构和褶皱结构)和利用导电材料构建微纳结构(微球结构、海胆状结构、蜂窝状结构)的柔性压力传感器的研究进展及其优缺点,总结了基于微纳结构的高灵敏度柔性压力传感器在脉搏监测、电子皮肤、运动检测和人机界面等方面的应用现状。最后,从今后应用的角度出发,概述了高灵敏度柔性压力传感器即将面临的挑战及未来发展方向。 相似文献
3.
有机场效应晶体管是一种优良的传感器载体,具有丰富的传感机制和独特的电信号放大特性.有机半导体具有质量轻便、机械柔性、可溶液加工、分子结构可调等优点,适于制备低成本、大面积、多功能的柔性传感活性层.基于有机场效应晶体管的各类柔性传感器已经广泛应用于智能穿戴、电子皮肤、生物检测、环境保护等领域.本文总结了近年来柔性有机场效应晶体管传感器的研究进展,从材料、机制和应用三个层面出发,介绍有机半导体传感材料的设计原则、有机场效应晶体管的传感机制及其在化学、物理、生物领域的应用.最后,总结了有机场效应晶体管传感器的研究现状和现存问题,展望了有机场效应晶体管柔性传感器的未来发展方向. 相似文献
4.
针对传统多元醇方法合成银纳米线(Ag NWs)产生大量的银纳米颗粒和银纳米棒等副产物,对后续材料加工步骤带来许多困难,并降低该材料在器件应用中的性能的缺点,采用聚乙烯吡咯烷酮(PVP)、乙二醇(EG)、NaCl和Ag NO3等原料通过多元醇二次加热的方法合成了长径比为1000的Ag NWs。通过SEM、UV-Vis和XRD对Ag NWs的结构和形态进行了表征,表明合成了几乎没有其他银纳米结构的Ag NWs。将Ag NWs应用在实际中,以Ag NWs为填料,聚二甲基硅氧烷(PDMS)为基底,制备出柔性应变传感器,制备出的柔性传感器具有良好的应变能力,在100%~150%的应变条件下,灵敏度达到2.405。 相似文献
5.
采用模压成型方法制备了2种柔软性不同的热塑性聚氨酯/短切碳纤维/碳纳米管(TPU/SCF-CNT)复合材料复制物, 其表面上具有倒金字塔微结构阵列, 内部有SCF与CNT共同构成的导电通路. 将复合材料复制物和相应的复合材料平整片封装成柔性传感器. 结果表明, 压力作用下传感器内复制物和平整片之间的接触电阻因倒金字塔底棱的形变而显著降低. 对使用柔软性较高的复合材料封装的传感器, 虽然其相对迟滞稍大, 但压力作用下倒金字塔底棱形变量较大, 且复制物和平整片内导电通路增加量较大, 因此其在0~2.5 kPa的线性区内具有较高的灵敏度(0.32 kPa?1). 制备的2种传感器均具有快速响应特性, 且能在500 s(约1580次)的循环压缩/释放测试(峰值压力约3 kPa)中保持较稳定的电阻响应. 研究表明, 利用模压成型的表面倒金字塔结构复合材料复制物封装成的柔性压力传感器具有良好的传感性能. 相似文献
6.
7.
采用静电纺丝方法制备了不同含量的偏氟乙烯和三氟乙烯的共聚物(P(VDF—TrFE))纳米纤维薄膜。通过P(VDF—TrFE)纳米纤维薄膜和柔性电极的结合,设计制作了一种针对医疗和服饰等领域应用的新型柔性压力传感器。利用扫描电镜和X射线衍射分析的方法分别对P(VDF—TrFE)纳米纤维的形貌和晶体结构进行了表征,并通过自制的测试系统获得了柔性压力传感器的灵敏度。结果表明:静电纺丝得到的纳米纤维具有较高的结晶度和β相结晶含量,其中P(VDF—TrFE)(n(VDF)/n(TrFE)=77/23)纳米纤维的口相结晶含量达到了51.3%,同时这种纳米纤维薄膜具有柔软、透气和生物相容性好等优点;基于电纺纳米纤维的柔性压力传感器具有良好的响应性能。P(VDF—TrFE)(T/(VDF)/n(TrFE)=77/23)压力传感器具有最高为60.5mV/N的灵敏度,接近于其塑性薄膜传感器,但塑性薄膜传感器的柔软性和透气性较差 相似文献
8.
9.
通常可采用分子力学计算来得到有机分子的优势构象,但平常使用分子力学程序,由优化分子的构象得到的优化能,往往并不是分子的最低能量,而与分子的最初输入构象有关,是分子的初始输入构象附近的极小值,这给实际应用带来了困难.目前较为常规的求分子最优几何构象的方法是统计方法(Monte Carlo方法),通过模拟退火(The Simulated Annealing)来处理.开始“温度”较高的分子位于能量较高的位置上,这时分子的构象处于少数几个极小区 相似文献
10.
柔性压阻式传感器具有结构简单、易于制备、检测范围广等优势, 在可穿戴电子器件领域中扮演着非常重要的角色. 在制备柔性压阻式传感器的众多方法中, 溶液法由于操作简单、反应条件温和、材料的适用性广泛、易于规模化制备等优势, 成为极具发展前景的制备工艺. 在此基础上, 如何进一步提高柔性压阻式传感器的力学与电学性能也成为研究者们更加关注的话题. 另外, 制备图案化、微型化、规模化的传感器阵列为柔性压阻式传感器的应用范围拓展了新的道路. 本综述首先介绍了柔性压阻式传感器的工作原理与性能指标, 同时讨论了其性能指标对传感器在实际应用中的影响. 随后, 简单介绍了其构成材料, 并通过梳理近年来溶液法制备柔性传感器的研究成果, 选取了几种典型的溶液法制备方法进行重点介绍, 指出其具备的优势及目前存在的问题. 最后, 对溶液法制备柔性传感器的发展方向进行总结与展望. 相似文献
11.
Daphika S Dkhar Rohini Kumari Supratim Mahapatra Divya Prof. Dr. Pranjal Chandra 《Electroanalysis》2023,35(2):e202200154
Wearable sensing devices have transformed the hourly analysis of events such as body signals and environmental risks into real-time monitoring in minutes or seconds. Wearable sensors have facilitated the ability to obtain useful data by monitoring the physiological parameters and activities of an aided and a healthy individual. Wearable devices employ detectable biomarkers in the human body, such as in tears, saliva, interstitial fluid, sweat, and so on. These can deliver relevant information on human health, online activity monitoring, and therapeutic treatments. This section outlines the significance of sample types and associated biomarkers as indicators in the development and manufacturing of wearable biosensors. We have emphasized the most recent advances of wearables based on skin-like and textile, giving attention to personalized health monitoring to record signals of motion and physiological and body fluid investigation. Furthermore, this review categorizes wearable biosensors based on the sensing mechanism, electrochemical, optical, and mechanical. Additionally, the recent wearables related to the detection of the newly havoc-causing pandemic, COVID-19, and the future perspective for the development of much more advanced and potent wearable biosensors have been highlighted. The final section highlights unmet difficulties and gaps in wearable sensors in personalized therapy. 相似文献