首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A polyvinyl alcohol (PVA) cellulose electrolyte was prepared by casting a solution of PVA and H3PO4 on both sides of a cellulose membrane (filter paper). The ionic species H+ are caused by the H3PO4 acid which is entrapped inside the PVA and in the pores of the filter paper. The electrolyte was sandwiched between two carbon electrodes to form an electric double layer capacitor (EDLC). The EDLC exhibits a good charge and discharge characteristics with a capacitance value of 30 Fg−1. Paper presented at the International Conference on Functional Materials and Devices 2005, Kuala Lumpur, Malaysia, June 6 – 8, 2005.  相似文献   

2.
Polyvinyl alcohol (PVA)-based proton conducting polymer electrolytes have been prepared by the solution cast technique. The conductivity is observed to increase from 10−9 to 10−4 S cm−1 as a result of orthophosphoric acid (H3PO4) addition. The plot of conductivity vs temperature shows that a phase transition occurred at 343 K in the sample PVA-33 wt% H3PO4. The β-relaxation peak is observed at 313 K. The glass transition temperature of PVA-33 wt% H3PO4 is 343 K. Orthophosphoric acid seems to play a dual role, i.e., as a proton source and as a plasticizer. The ac conductivity σ ac = s was also calculated in the temperature range from 303 to 353 K. The conduction mechanism was inferred by plotting the graph of s vs T from which the conduction mechanism for sample PVA-17 wt% H3PO4 was inferred to occur by way of the overlapping large polaron tunneling (OLPT) model and the conduction mechanism for the sample PVA-33 wt% H3PO4 by way of the correlated barrier height (CBH) model.  相似文献   

3.
S. W. Tao  J. T. S. Irvine 《Ionics》2000,6(5-6):389-396
Apatite is a mineral with general formula M10(XO4)6Z2, where M are metallic elements such as Li+, Na+, K+, Ca2+, Sr2+, Ba2+, Ln3+ etc.; X=P, V, S, Si, Ge, Re, Cr etc; Z=F, Cl, I, OH, O2−, S2− etc. Some materials with apatite structure (S.G. P63/m) exhibit quite high cationic (Li+, H+ etc.) and/or anionic (F, Cl etc.) conduction. Recently, it was reported that some rare earth silicates, e.g., La10(SiO4)6O3, exhibit quite high oxide-ion conductivity. In this paper, we discuss chemical composition, structure, synthetic procedure and ionic conduction of apatite-type materials. Recent improvements are briefly reviewed. High ionic conductivity has been observed for both cation deficient, oxygen stoichiometric La9.33(SiO4)6O2 and cation stoichiometric, oxygen excess La10(SiO4)6O3 compositions. Grain boundary conductivity is usually low, which tends to dominate the impedance response. The resistance, particularly the grain boundary resistance is also found to depend on pO2. Paper presented at the 7th Euroconference on Ionics, Calcatoggio, Corsica, France, Oct. 1–7, 2000.  相似文献   

4.
A new chemosensing ensemble that displays sensitive and selective fluorescent recognition of pyrophosphate in water at pH 7.4 has been developed. The ensemble is constructed by a copper complex (receptor) and eosin Y (indicator), the constructed ensemble is capable of highly selectively discriminate pyrophosphate from other common existing anions such as CH3COO, HSO4, NO3, H2PO4, HPO42−, PO43−, NCS, I, Cl, Br, Fas well as some structurally similar carboxylates such as citrate, tartrate, oxalate, malonate, succinate and glutarate.  相似文献   

5.
P. Birke  W. Weppner 《Ionics》1996,2(1):75-79
Thin Li3±xPO4±yNzLi+- electrolyte films prepared by reactive rf-magnetron sputtering of Li3PO4 incorporate a certain amount of nitrogen which is made responsible for increased Li+-conductivity as well as at least kinetic stability with lithium metal. A possible change of the oxidation state +5 of phosphorus as a result of the sputter process has not yet been considered for explanation. We have found out that it cannot be generally assumed that reactive low power rf-magnetron sputtering of Li3PO4 results in fully oxidized films, even when pure O2 is employed as sputtering gas. Our films immediately react with H2O releasing a garlic smelling gas. The reaction area is surrounded by a white crust afterwards. CuSO4 and AgNO3 aqueous solutions become reduced. Impedance measurements yield an ionic conductivity of 2·10−6 S/cm at 25 °C and an activation energy of 0.62 eV.  相似文献   

6.
Towards a thin films electrochromic device using NASICON electrolyte   总被引:1,自引:0,他引:1  
The optimisation of the morphology of WO3 thin films allowed a more efficient electrochromic colouring using Na+ ions than H+ ones. Therefore, sodium superionic conductor (Na3Zr2Si2PO12, NASICON) films may be used as electrolyte in inorganic electrochromic devices. In this paper, the structure, chemical composition, morphology and electrochromic properties of WO3, ZnO:Al and Na3Zr2Si2PO12 thin films were studied to develop a novel type of electrochromic device. WO3, ZnO:Al and Na3Zr2Si2PO12 thin films were deposited using reactive magnetron sputtering of tungsten, zinc and aluminium and Zr–Si and Na3PO4 targets, respectively. For transparent conductive oxide coatings, a correlation was established between the deposition parametres and the film’s structure, transmittance and electrical resistivity. Classical sputtering methods were not suitable for the deposition of NASICON films on large surface with homogenous composition. On the other hand, the use of high-frequency pulsed direct current generators allowed the deposition of amorphous films that crystallised after thermal annealing upon 700 °C in the Na3Zr2Si2PO12 structure. Amorphous films exhibited ionic conductivity close to 2 × 10−3 S cm−1. Finally, preliminary results related to the electrochromic performance of NASICON, WO3 and indium tin oxide devices were given. Paper presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, France, Sept. 9–15, 2007.  相似文献   

7.
Mei Li 《Ionics》2012,18(5):507-512
LiCo1−x Mn x PO4/C cathode materials are selectively synthesized by a solvothermal method in ethylene glycol solvent using glucose, LiCl, H3PO4, MnCl2·4H2O, and Co(NO3)2·6H2O as precursors. The obtained samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) and the electrochemical performances are also evaluated using a LAND CT2001A battery test system at room temperature. XRD result demonstrates the formation of LiCo1−x Mn x PO4 solid solution and the enlarged channels are benefit for Li+ migration. SEM graph indicates that the particle size of LiCo0.5Mn0.5PO4/C is about several hundred nanometers and aggregates to large particles located in the range of 2–3 μm. TEM image illustrates that the core/shell-structured LiCo0.5Mn0.5PO4/C solid solution is indeed obtained by this method. The high specific surface area (35 m2/g) of LiCo0.5Mn0.5PO4/C could make this solid solution contact with the electrolyte more sufficiently and benefit for Li+ transportation. The capacity, flat voltage, and cyclical stability of LiCo1−x Mn x PO4/C are improved compared to LiMnPO4 and LiCoPO4 due to the improved electronic conductivity and lithium-ion conductivity which resulted from carbon coating and foreign element incorporation.  相似文献   

8.
The chemical composition of ultrafine amorphous Fe−B powders prepared by a chemical reduction depends on the mixed molar ratio of KBH4 to Fe ions. We propose the following reaction processes for the formation of ultrafine Fe−B powders: (1) 4Fe2++2BH4−+6OH→2Fe2B+6H2O+H2 and (2) 4Fe2++2BH4−+7OH→2Fe3B+Fe+BO2+5H2O+5/2H2.  相似文献   

9.
The ionic conductivity of PVC–ENR–LiClO4 (PVC, polyvinyl chloride; ENR, epoxidized natural rubber) as a function of LiClO4 concentration, ENR concentration, temperature, and radiation dose of electron beam cross-linking has been studied. The electrolyte samples were prepared by solution casting technique. Their ionic conductivities were measured using the impedance spectroscopy technique. It was observed that the relationship between the concentration of salt, as well as temperature, and conductivity were linear. The electrolyte conductivity increases with ENR concentration. This relationship was discussed using the number of charge carrier theory. The conductivity–temperature behaviour of the electrolyte is Arrhenian. The conductivity also varies with the radiation dose of the electron beam cross-linking. The highest room temperature conductivity of the electrolyte of 8.5 × 10−7 S/cm was obtained at 30% by weight of LiClO4. The activation energy, E a and pre-exponential factor, σ o, are 1.4 × 10−2 eV and 1.5 × 10−11 S/cm, respectively.  相似文献   

10.
The Li1−x La x /3Zr2(PO4)3 NASICON-type compounds (0 ≤ x ≤ 1) have been synthesized in powder form by a sol-gel method and sintered for ionic conductivity measurements. In order to improve the compactness of the ceramic without decomposition of the compound, several sintering processes have been tested for one member of the solid solution (x = 0.6): the use of sintering aids (ZnO, B2O3, TiO2 and LiNO3), a ball-milling of the synthesized powder, a flash heating, high isostatic pressure, and spark plasma sintering. Finally, a satisfactory compactness of 85% is obtained compared to the referenced value (63%) obtained by uniaxial and isostatic pressing. The ionic conductivity study was performed by impedance spectroscopy. It shows that, despite the formation of vacancies, the substitution Li+→ 1/3 La3+ + 2/3 □ has unfortunately no influence on the conduction for 0 ≤ x ≤ 0.7 since the ionic conductivity remains identical to the LiZr2(PO4)3 one. For higher x values, the ionic conductivity strongly decreases.  相似文献   

11.
N. Imanaka 《Ionics》2003,9(1-2):36-40
New types of multivalent ion conducting solid electrolytes have been extensively developed and their applications for chemical sensors were investigated. Among the trivalent ion conductors, the highest ion conductivity was realized with the (AlxZr1−x)4/(4−x)Nb(PO4)3 solid electrolyte and the value reaches the region between yttria stabilized zirconia (YSZ) and calcia stabilized zirconia (CSZ) of the representative oxide anion conductors. The above described Al3+ ion conducting (AlxZr1−x)4/(4−x)Nb(PO4)3 solid electrolyte was combined with YSZ, with accompanying the Y2O3-KNO2 solid solution as an auxiliary electrode for nitrogen monoxide (NO) gas sensing. The sensor response was rapid and a reproducible output was continuously observed obeying the Nernst theoretical relationship in a typical NO gas content region in exhaust gases. Paper presented at the 9th EuroConference on Ionics, Ixia, Rhodes, Greece, Sept. 15 – 21, 2002.  相似文献   

12.
A new method for the determination of trace mercury by solid substrate-room temperature phosphorimetry (SS-RTP) quenching method has been established. In glycine-HCl buffer solution, xylenol orange (XO) can react with Sn4+ to form the complex [Sn(XO)6]4+. [Sn(XO)6]4+ can interact with Fin (fluorescein anion) to form the ion associate [Sn(XO)6]4+·[(Fin)4], which can emit strong and stable room temperature phosphorescence (RTP) on polyamide membrane (PAM). Hg2+ can catalyze H2O2 oxidizing the ion association complex [Sn(XO)6]4+·[(Fin)4], which causes the RTP to quench. The ΔIp value is directly proportional to the concentration of Hg2+ in the range of 0.016–1.6 fg spot−1 (corresponding concentration: 0.040–4.0 pg ml−1, 0.40 μl spot−1), and the regression equation of working cure is ΔIp=10.03+83.15 m Hg2+ (fg spot−1), (r=0.9987, n=6) and the detection limit (LD) is 3.6 ag spot−1(corresponding concentration: 9.0×10–15 g ml−1, the sample volume: 0.4 μl). This simple, rapid, accurate method is of high selectivity and good repeatability, and it has been successfully applied to the determination of trace mercury in real samples. The reaction mechanism for catalyzing H2O2 oxidizing the ion association complex ([Sn(XO)6]4+·[(Fin)4]) SS-RTP quenching method to determine trace mercury is also discussed.  相似文献   

13.
Infrared and Raman spectra of polycrystalline KUO2PO4 · 3 H2O (KUP) and its isotopic derivatives KUO2P18O4 · 3 H2O and KUO2PO4 · 3 D2O have been investigated in the 4000-10-cm?1 range at different temperatures. An assignment of the bands in terms of UO2, PO4 and H2O vibrations has been proposed. Combined differential scanning calorimetry and spectroscopic data show two diffuse phase transitions near 130 and 230 K. Comparison of the vibrational spectra of phase I at 300 K and phase IV at 100 K indicates that ordering of the water molecules with subsequent ordering of PO4 tetrahedra on a site with lower symmetry appears to be the main mechanism responsible for the phase transformation. All the six O-H distances of water molecules in phase IV are found to be crystallographically nonequivalent. Conducting ion frequencies and the corresponding force constants have been determined for the analogous compounds MUP with M = K+, Na+, Ag+, NH+4, Tl+ and H3O+ and compared with other properties of these ionic conductors. Conductivity mechanisms in these materials are discussed.  相似文献   

14.
Rajiv Kumar  S. S. Sekhon 《Ionics》2004,10(1-2):10-16
Non-aqueous polymer gel electrolytes containing trifluoromethanesulfonic acid (HCF3SO3) and polyethylene oxide (PEO) as the gelling polymer has been studied. The increase in conductivity observed with the addition of PEO to liquid electrolytes has been explained to be due to the breaking of ion aggregates present in electrolytes at higher acid concentrations. The increase in free H+ ion concentration upon breaking of ion aggregates has also been observed in pH measurements and viscosity of gel electrolytes has been found to increase with PEO addition. Polymer gel electrolytes containing dimethylacetamide (DMA) have σ ∼ 10−2 S/cm at room temperature and are stable over −50 to 125 °C range of temperature. Gels based on propylene carbonate (PC) and ethylene carbonate (EC) are stable in the −50 to 40 °C temperature range and loose their gelling nature above 40 °C.  相似文献   

15.
Rajiv Kumar  S. S. Sekhon 《Ionics》2004,10(5-6):436-442
Non-aqueous polymer gel electrolytes containing trifluoromethanesulfonic acid (HCF3SO3) and polyethylene oxide (PEO) as the gelling polymer has been studied. The increase in conductivity observed with the addition of PEO to liquid electrolytes has been explained to be due to the breaking of ion aggregates present in electrolytes at higher acid concentrations. The increase in free H+ ion concentration upon breaking of ion aggregates has also been observed in pH measurements and viscosity of gel electrolytes has been found to increase with PEO addition. Polymer gel electrolytes containing dimethylacetamide (DMA) have σ ∼ 10−2 S/cm at room temperature and are stable over −50 to 125 °C range of temperature. Gels based on propylene carbonate (PC) and ethylene carbonate (EC) are stable in the −50 to 40 °C temperature range and loose their gelling nature above 40 °C.  相似文献   

16.
Laser-induced breakdown spectroscopy (LIBS) in germane (GeH4), initially at room temperature and pressures ranging from 2 to 10 kPa, was studied using a high-power transverse excitation atmospheric (TEA) CO2 laser (λ=10.653 μm, τ FWHM=64 ns and power densities ranging from 0.28 to 5.52 GW cm−2). The strong emission spectrum of the generated plasma is mainly due to electronic relaxation of excited Ge, H and ionic fragments Ge+, Ge2+ and Ge3+. The weak emission is due to molecular bands of H2. Excitation temperatures of 8100±300 K and 23,500±2500 K were estimated by Ge atomic and Ge+ singly ionized lines, respectively. Electron number densities of the order of (0.7–6.2)×1017 cm−3 were deduced from the Stark broadening of several atomic Ge lines. The characteristics of the spectral emission intensities from different species have been investigated as functions of the germane pressure and laser irradiance. Optical breakdown threshold intensities in germane at 10.653 μm have been determined. The mechanism of initiation of the laser-induced plasma in germane has been analyzed.  相似文献   

17.
N. Imanaka  Y. Hasegawa  I. Hasegawa 《Ionics》2004,10(5-6):385-390
Among the trivalent ion conductors reported, the highest ion conductivity was realized with the trivalent Al3+ ion conducting (AlxZr1−x)4/(4−x)Nb(PO4)3 solid electrolyte and the value enters into the region between yttria stabilized zirconia (YSZ) and calcia stabilized zirconia (CSZ) that are well known to be high oxide anion conductors commercialized. The improvement of the ion conductivity and the mechanical strength was simultaneously achieved by adding B2O3 during the sintering procedure. The Al3+ ion conducting (AlxZr1−x)4/(4−x)Nb(PO4)3 solid electrolyte with B2O3 treatment was combined with YSZ, and the 0.7La2O2SO4-0.3Li2SO4 solid was attached on the (AlxZr1−x)4/(4−x)Nb(PO4)3 solid surface as the auxiliary electrode for sulfur dioxide (SO2) gas sensing. The sensor response was rapid, reproducible and continuous with obeying the Nernst theoretical relationship. Paper presented at the Patras Conference on Solid State Ionics — Transport Properties, Patras, Greece, Sept. 14 – 18, 2004.  相似文献   

18.
The infrared spectra of (NH4)2M″(SO4)2.6H2O has been analysed in the region 4000–250 cm−1. The dynamics of each crystal has been discussed in terms of 234 phonon modes, including 3 acoustical ones, using the unit cell approximation. The ambiguity in the assignments of the bands in the region 900–500 cm−1 has been removed by assigning the bands in this region to the libratory modes of H2O molecules. It has been concluded that the NH 4 + and SO 4 2− ions have a symmetry lower thanT dand also the complex [M″(H2O)6]2+ has a symmetry lower than O h . The hydrogen bonding is the strongest in the Ni-salt and the weakest in the Mg-salt.  相似文献   

19.
Thermal desorption spectrometry (TDS) and electron stimulated desorption (ESD) are employed to investigate mechanisms responsible for the formation of C2H6 in electron irradiated multilayer films of acetonitrile (CH3CN) at 30 K. Using a high sensitivity time-of-flight mass spectrometer, we observe the ESD of anionic fragments H, CH2 , CH3 and CN. Desorption occurs following dissociative electron attachment (DEA) via several negative ion resonances in the 6 to 14 eV energy range and correlates well with a “resonant” structure seen in the TDS yield of C2H6 (i.e., at mass 30 amu). It is proposed that C2H6 is formed by the reactions of CH3 radicals generated following DEA to CH3CN which also yields CN. Between 2 and 5 eV, a second resonant feature is seen in the C2H6 signal. While DEA is observed in the gas phase at these energies, no anion desorption occurs since anionic fragments likely have insufficient kinetic energy to desorb. Since the CH2 ion has not been observed in gas-phase measurements, we propose that it is formed, along with HCN (that is detected in TDS) when dissociation into CH3 and CN is hindered by adjacent molecules.  相似文献   

20.
Open circuit voltage (OCV) measurements in H2O/air concentration cells at T<580 K using Yb-doped SrCeO3 electrolyte indicate that under these conditions, protons are transported through the electrolyte as -ve ions, possibly as hydroxyl (OH) ions. The H+ ionic transport, which is generally reported, becomes the dominant mode for H2O/air concentration cells at temperatures greater than 750 K or when H2O/air electrodes are replaced by H2/Ar, and the anomalous OCV sign disappears. The combination of low temperature and the presence of hydrogen and oxygen as provided by the H2O/air system appears to be necessary for the postulated hydroxyl ion electrode reactions to take place. In addition to OCV measurements, results from impedance spectroscopy are used to provide evidence in support of the suggested hydroxyl ion mode of protonic transport under the specified conditions. These findings are directly relevant in the development of novel humidity sensors in the temperature range 450–580K and is reported in a separate paper in this conference. Paper presented at the 3rd Euroconference on Solid State Ionics, Teulada, Sardinia, Italy, Sept. 15–22, 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号