首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 659 毫秒
1.
Systematic valence changes in Pr1−xSrxMn1−yInyO3−δ upon cation substitution with Sr2+ and In3+ have been found using Mn K-edge and Pr L-edge X-ray absorption, and Mn LII,III and Pr MIV,V electron energy-loss spectroscopy. The average valence of the praseodymium ions is close to +3.0 and virtually constant over the sample set when the samples also contained manganese ions. Pr0.5Sr0.5InO3−δ showed a distinct increase in the praseodymium valence state. In contrast, the average valence of the manganese ions changed from the trivalent state to intermediate values between +3.0 and +4.0 and approached the tetravalent state depending on the level of substitution. The knowledge of the valence is required to understand the conduction mechanisms in the material due to the small polaron hopping (electronic conductivity) and motion of oxygen ions along the vacancies (ionic conductivity). Addition of strontium and indium led to the formation of oxygen vacancies. A previously assumed intermediate valence of praseodymium as causal factor for the higher oxygen catalytic activity cannot be confirmed with room temperature measurements.  相似文献   

2.
Ceramic samples of manganite perovskites La0.6 ? x Pr x Sr0.3Mn1.1O3 (x = 0?0.6) have been studied using the X-ray diffraction, resistive, magnetic (χac, 55Mn NMR), microscopic, and magnetoresistive methods. It has been found that an increase in the praseodymium concentration x leads to a transition from the rhombohedral R $\bar 3$ c (x = 0–0.3) to orthorhombic Pbnm (x = 0.4–0.6) perovskite structure. It has been shown that the real perovskite structure contains anion and cation vacancies, whose concentrations increase with an increase in the praseodymium concentration x. A decrease in the metal-insulator phase transition temperature T mi and the ferromagnetic-paramagnetic phase transition temperature T c with increasing x correlates with an increase in the concentration of vacancies weakening the high-frequency electronic exchange Mn3+ ? Mn4+. For compositions with x = 0 and 0.1, when the lattice contains not only vacancies but also nanostructured clusters with Mn2+ in the A-positions, there is an anomalous hysteresis. An analysis of the asymmetrically broadened 55Mn NMR spectra of the compounds has revealed a high-frequency electronic exchange of the ions Mn3+ Mn4+ in the B-positions and a local heterogeneity of their surrounding by other ions (La2+, Pr3+, Sr2+) and vacancies. The phase diagram has demonstrated that there is a strong correlation between the composition, imperfection of the perovskite structure, phase transition temperatures T mi and T c , and magnetoresistive properties.  相似文献   

3.
Both trivalent praseodymium (Pr3+) and quadrivalent praseodymium (Pr4+) were doped in molybdate powders. Visible emission from matrix was enhanced by multivalent Pr codoping. It was proposed that Pr3+ ions was donor and supplied quasi-free electron when Pr3+ took place the Pr4+ sites. The result showed that multivalence codoping would be an effective way to enhance emission of CaMoO4. White light can be generated from Ca0.98Pr0.02MoO4 powder via combination of broadband emissions originated from CaMoO4 matrix and radiative transition of Pr3+. It showed warm white light with Tc of 3450 K that implies promising application in white light emitting diodes (LEDs).  相似文献   

4.
The spectral dependences of X-ray absorption near-edge spectroscopy (XANES) and X-ray magnetic circular dichroism (XMCD) and the field dependences of XMCD near the K edge of Mn and the L2,3 edges of Pr in the Pr0.8Sr0.2MnO3 and Pr0.6Sr0.4MnO3 films at T = 90 K are studied. The spectral dependences point to a mixed valence state of Mn and Pr in the films. It is found that, as compared to XANES, XMCD is more sensitive to the valence state of Pr4+. The field dependences of XMCD point to ferromagnetic behavior of Mn ions and the Van Vleck paramagnetism of Pr ions, which makes a significant contribution to the total magnetization of the films. It is shown that as the Sr concentration increases, the XMCD intensity at the K edge of Mn increases, which indicates a growth of the total magnetic moment of the film due to an increase in the 4p–3d hybridization.  相似文献   

5.
The Y0:4Pr0:6Ba2-xSrxCu3O7-δ (x = 0;1:0) samples were prepared and the structural properties were studied by X-ray Rietveld analysis. It has been found that the average Pr-O bond length increases from 2.435Å at x = 0 to 2.457Å at x = 1:0, the Cu(2)-O-Cu(2) angles within the CuO2 planes become larger, and there is no significant mutual substitution between Pr and Sr ions. The BVS calculation suggests that Sr doping brings about the increase of the hole concentration on CuO2 planes and the weakening of Pr-O covalent mixing. Our work supports that Pr-O covalent mixing effect is responsible for the superconductivity suppression by Pr.  相似文献   

6.
The crystal structure of solid solutions in the Bi1 ? x Pr x FeO3 system near the structural transition between the rhombohedral and orthorhombic phases (0.125 ≤ x ≤ 0.15) has been studied. The structural phase transitions induced by changes in the concentration of praseodymium ions and in the temperature have been investigated using X-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. It has been established that the sequence of phase transformations in the crystal structure of Bi1 ? x Pr x FeO3 solid solutions with variations in the temperature differs significantly from the evolution of the crystal structure of the BiFeO3 compounds with the substitution of other rare-earth elements for bismuth ions. The regions of the existence of the single-phase structural state and regions of the coexistence of the structural phases have been determined in the investigation of the crystal structure of the Bi1 ? x Pr x FeO3 solid solutions. A three-phase structural state has been revealed for the solid solution with x = 0.125 at temperatures near 400°C. The specific features of the structural phase transitions of the compounds in the vicinity of the morphotropic phase boundary have been determined by analyzing the obtained results. It has been found that the solid solutions based on bismuth ferrite demonstrate a significant improvement in their physical properties.  相似文献   

7.
The radiation stability of the mixed crystals M1 ? xRxF2 + x (M = Ca, Sr, Ba) depends on types of the alkaline-earth and rare-earth ions. Different to Eu- and Ce-containing systems, M1 ? xPrxF2 + x solid solutions have a low radiation resistance, which may be associated with hole trapping on praseodymium ion according to the reaction Pr3+  Pr4+ which is typical for praseodymium. The coloration efficiency of M1 ? xPrxF2 + x crystals grows in the row Ca  Sr  Ba, which is explained satisfactorily within the model of rare-earth clusters, the structure of which is determined by the ratio of the base alkaline-earth cation to the praseodymium ion radii.  相似文献   

8.
Self-doped manganites with nominal composition La0.6−xSr0.4MnO3−δ (0≤x≤0.175) have been prepared by the sol–gel method. The X-ray diffraction (XRD) patterns and magnetic measurements indicate that the samples have two phases with the ABO3 perovskite structure being the dominant phase and Mn3O4 being the minor phase when the doping level x≥0.05. On the basis of the thermal equilibrium theory of crystal defects, the contents of various ions in the perovskite phases were estimated, in which there are Mn2+ ions and no vacancies at A sites. The ion contents have been corrected by Rietveld fitting of the powder samples' X-ray diffraction data. The change tendency of the Curie temperature TC vs. the Mn4+ ion content ratio at the B sites of ABO3 perovskite phase is in accord with the experimental result of the samples La1−xSrxMnO3.  相似文献   

9.
The mixed-compound of Sr1−xCaxTiO3 has shown several compositional phase transformations. Photoluminescence and excitation spectra of the samples with different x and doped with 0.2% Pr3+ were investigated. Changes in the emission spectra were observed in different phases. The blue emission at 491 nm from 3P0 state was found quite strong in the tetragonal phase, and was thermally quenched in the orthorhombic phases. The intensity of the red luminescence from 1D2 increases with increasing content of calcium. The strongest red emission is obtained from CaTiO3:Pr3+. The results are discussed based on the configuration coordinate model and interaction of Pr with the charge transfer exciton state of the Ti complex.  相似文献   

10.
The valence state of Co ions in Pr1−xCaxCoO3−δ and Pr1−xSrxCoO3−δ has been investigated by an analysis of the Co-L3 X-ray absorption near-edge structure (XANES) profile. The observed intensity distributions of Co-L3 XANES change continuously with increasing concentration of alkaline-earth ions. To investigate the origin of this change in the XANES profile, charge transfer multiplet calculations were carried out, which could successfully explain the change in the spectral profile; they also suggest that the valence state of Co ions in Pr1−xCaxCoO3−δ and Pr1−xSrxCoO3−δ is between 3+ and 4+ and increases gradually with the concentration of alkaline-earth ions.  相似文献   

11.
Perovskite manganites with nominal composition La0.7Sr0.3−xMnO3−δ (0.00≤x≤0.20) have been prepared by the sol-gel method with the highest heat treatment temperature being 1073 K. The XRD patterns indicate that when the doping level is x≤0.10 the samples have only a single phase, with the R3?c perovskite structure, while for x>0.10, the samples have two phases with the R3?c perovskite being the dominant phase and Mn3O4 being the second phase. A quantitative analysis and Rietveld fitting of the X-ray powder diffraction data indicate that on the basis of the thermal equilibrium theory of crystal defects there are Mn2+ ions at the A sites and Mn3+ plus Mn4+ ions at the B sites in the ABO3 perovskite phase. The curves of magnetization versus applied magnetic field at 10 K showed that the magnetic moments of the Mn2+ ions at the A sites are antiparallel to those of the Mn3+ and Mn4+ ions at the B sites.  相似文献   

12.
Spectral-kinetic study of Pr3+ luminescence has been performed for LiLuF4:Pr(0.1 mol%) single crystal upon the excitation within 5-12 eV range at T=8 K. The fine-structure of Pr3+ 4f 2→4f 5d excitation spectra is shown for LiLuF4:Pr(0.1 mol%) to be affected by the efficient absorption transitions of Pr3+ ions into 4f 5d involving 4f 1 core in the ground state. Favourable conditions have been revealed in LiLuF4:Pr(0.1 mol%) for the transformation of UV-VUV excitation quanta into the visible range. Lightly doped LiLuF4:Pr crystals are considered as the promising luminescent materials possessing the efficient Pr3+3P0 visible emission upon UV-VUV excitation. The mechanism of energy transfer between Lu3+ host ion and Pr3+ impurity is discussed.  相似文献   

13.
The study of the substitution of magnesium for manganese in the type I Pr0.7(Ca,Sr) 0.3MnO3 and type II Pr0.5Sr0.5MnO3 manganites has been performed. Remarkable colossal magneto resistance (CMR) properties have been evidenced for the manganites Pr0.7Ca0.2Sr0.1 Mn1 xMgxO3, with x ≤ 0.02, for which ROT/R7T resistance ratio values ranging from 104 to 4.105 at 105 K and 70 K respectively were obtained in a magnetic field of 7 T. The study of the type II phases Pr0.5Sr0.5M1 xMgxO3, shows their similarity with the trivalent metal doped manganites Pr0.5Mn1?x MxO3 with M = Al, Ga, In, in contrast to the tetravalent metal doped manganites with M = Ti, Sn. The latter properties are interpreted in terms of two factors, the molar ratio Mn(III): Mn(IV), and the size of the doping cation.  相似文献   

14.
The chemical states of the surface of (Ln0.5Sr0.5)CoO3?δ (Ln (lanthanides) = Pr, Nd and Sm) used for cathode materials of intermediate temperature operating solid oxide fuel cells (IT-SOFCs) were investigated by X-ray photoelectron spectroscopy (XPS). Oxygen peaks comprised of lower binding energy (LBE) and higher binding energy (HBE) peaks from (Ln0.5Sr0.5)CoO3?δ and Pr0.3Sr0.7CoO3?δ (PSC37) showed that some merged oxygen peak behavior is a function of the Sr and lanthanide concentrations. By investigating the oxygen peaks, it was determined that more oxygen vacancies were generated on the surface of the cathodes when the lanthanides and Sr were substituted into perovskite oxides. When comparing the binding energies (BEs) of PSC37 with Pr0.5Sr0.5CoO3?δ (PSC55), the LBE and HBE of the Sr peaks both increased when Sr was substituted at the A-site of a perovskite. Surface analysis of the Co peak on the surface of the cathode materials showed that the Co exists mainly as Co3+ and partially oxidized to Co4+ on the cathode materials. The partial existence of Co4+ can provide some polaron hopping providing electronic conduction for the solid oxide fuel cell.  相似文献   

15.
The structural, resistive, magnetic, and magnetoresistive properties of the La0.6Sr0.3 ? x Bi x Mn1.1O3 ceramics have been studied. The substitution of Bi ions for Sr ions increases the lattice parameter of the rhombohedral perovskite structure, decreases the metal-semiconductor and ferromagnet-paramagnet phase transition temperatures and the peak of the magnetoresistive effect, and increases the resistivity, approaching the system to the ferroelectric state. The 55Mn NVR study indicates on the high-frequency Mn3+ ? Mn4+ superexchange and heterogeneity of the valence and magnetic states of manganese due to the nonuniformity of distribution of all ions and defects. The phase diagram has been constructed, which shows a strong correlation between the structural, magnetic, and magnetoresistive properties.  相似文献   

16.
The significance of heterovalent, substitutional disorder for the distribution of charge carriers in La2?x Sr x CuO4 has been investigated. Disorder is shown to cause strong variations of binding energies of the ions ranging to some eV for Sr contentsx=0.1. Balancing the energy for a hole transport, Cu3++O2?→Cu2++O?, and taking binding energy variations into account, the process is realized to become possible without consuming energy for a subset Θ for allx Cu3+ in one formula unit of La2?x Sr x CuO4. The functions Θ(x) are presented for hole transports to apex and in-plane oxygens, respectively. The delocalization of charge carriers is interpreted to be caused by valency disorder on metal lattice sites.  相似文献   

17.
Fe-doped (Ba1−xSrx)TiO3 ceramics were prepared by solid-state reaction, and ferromagnetism was realized at room temperature. The microstructure and magnetism were modified by the Sr concentration control (0≤x≤75 at%) at a fixed Fe concentration, and the relevant magnetic exchange mechanism was discussed. All the samples are shown to have a single perovskite structure. When increasing the Sr concentration, the phase structure is transformed from a hexagonal perovskite into a cubic perovskite, with a monotonic decrease in lattice parameters induced by ionic size effect. The room-temperature ferromagnetism is expected to originate from the super-exchange interactions between Fe3+ on pentahedral and octahedral Ti sites mediated by the O2− ions. The increase in Sr addition modifies two main influencing factors in magnetic properties: the ratio of pentahedral to octahedral Fe3+ and the concentration of oxygen vacancies, leading to a gradually enhanced saturation magnetization. The highest value, obtained for Fe-doped (Ba0.25Sr0.75)TiO3, is an order of magnitude higher than that of the Fe-doped BaTiO3 system with similar Fe concentration and preparation conditions, which may indicate (Ba1−xSrx)TiO3 as a more suitable matrix material for multiferroic research.  相似文献   

18.
The effect of substitution of manganese and niobium for cobalt on the magnetic and crystal structure of doped cobaltites has been studied by the neutron diffraction method. The Pr0.5Sr0.5Co1 ? x Mn x O3 samples undergo, with increasing x, a series of transitions of the crystal structure from the monoclinic I2/a to orthorhombic Immm phase, and then, to the high-temperature tetragonal I4/mcm phase and low-temperature orthorhombic Fmmm phase. Undoped Pr0.5Sr0.5CoO3 is a ferromagnet, but the magnetic ordering is destroyed with increasing x. At high degrees of substitution of manganese, the A-type antiferromagnetic ordering is observed. Substitution of niobium for cobalt in La1 ? x Sr x CoO3 compositions leads to changes in the Co-O bond length and the unit cell volume, which is accompanied by a decrease in the ferromagnetic moment. The Co → Nb substitution prevents the formation of Co4+ and leads to the stabilization of Co3+ in a high-spin state.  相似文献   

19.
The elastic properties and crystal structure of the Pr1?x Sr x CoO3 system are studied. Two types of crystal structure transitions are found. For the composition x = 0.5, the monoclinic phase transforms to a rhombohedral one in the high-temperature transition (T ≈ 310 K), while the unit cell symmetry remains monoclinic though the unit cell parameters change drastically in the low-temperature transformation (T ≈ 110 K). It is suggested that the high-temperature transition is caused by the dimensional effect, while the low-temperature transition is associated with the presence of praseodymium ions actively involved in chemical bonding.  相似文献   

20.
Equal amount Pr and Ca double-doping Y1?2xPrxCaxBa2Cu3O7?δ with 0 ? x ? 0.14 have been investigated by X-ray diffraction, resistivity, and X-ray photoemission spectroscopy (XPS). The deviation of the linearly decreasing of Tc vs. x curve was observed when x < 0.10. The resistivity and the temperature coefficient of resistivity also exhibit abnormal behaviors around x = 0.10. It is revealed that the conductivity behavior of Y1?2xPrxCaxBa2Cu3O7?δ with low Pr content (x < 0.10) is different from that of the relative high Pr content (x > 0.10), which suggests a change of Pr valence with the Pr content. XPS measurement shows that the relative amount of Pr3+ and Pr4+ is closely related to the total Pr content x. The valence of Pr is close to +3 when x < 0.10 and increases towards +4 when x > 0.10, which implies a different mechanism for depression of superconductivity of Pr content x < 0.10 from that of Pr content x > 0.10 in Pr doping Y-123.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号