首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The backward stochastic differential equations driven by both standard and fractional Brownian motions (or, in short, SFBSDE) are studied. A Wick-Itô stochastic integral for a fractional Brownian motion is adopted. The fractional Itô formula for the standard and fractional Brownian motions is provided. Introducing the concept of the quasi-conditional expectation, we study some its properties. Using the quasi-conditional expectation, we also discuss the existence and uniqueness of solutions to general SFBSDEs, where a fixed point principle is employed. Moreover, solutions to linear SFBSDEs are investigated. Finally, an explicit solution to a class of linear SFBSDEs is found.  相似文献   

2.
In this paper, we study a new class of equations called mean-field backward stochastic differential equations(BSDEs, for short) driven by fractional Brownian motion with Hurst parameter H 1/2. First, the existence and uniqueness of this class of BSDEs are obtained. Second, a comparison theorem of the solutions is established. Third, as an application, we connect this class of BSDEs with a nonlocal partial differential equation(PDE, for short), and derive a relationship between the fractional mean-field BSDEs and PDEs.  相似文献   

3.
We study the existence, uniqueness and stability of solutions of general stochastic differential equations with constraints driven by semimartingales and processes with bounded p-variation. Applications to SDEs with constraints driven by fractional Brownian motion and standard Brownian motion are given.  相似文献   

4.
This paper concerns a class of stochastic differential equations driven by fractional Brownian motion. The existence and uniqueness of almost automorphic solutions in distribution are established provided the coefficients satisfy some suitable conditions. To illustrate the results obtained in the paper, a stochastic heat equation driven by fractional Brownian motion is considered. 1 1 The abstract section is available on the university repository site at http://math.dlut.edu.cn/info/1019/4511.htm .
  相似文献   

5.
In this article we introduce cylindrical fractional Brownian motions in Banach spaces and develop the related stochastic integration theory. Here a cylindrical fractional Brownian motion is understood in the classical framework of cylindrical random variables and cylindrical measures. The developed stochastic integral for deterministic operator valued integrands is based on a series representation of the cylindrical fractional Brownian motion, which is analogous to the Karhunen–Loève expansion for genuine stochastic processes. In the last part we apply our results to study the abstract stochastic Cauchy problem in a Banach space driven by cylindrical fractional Brownian motion.  相似文献   

6.
Abstract

We prove an existence and uniqueness theorem for solutions of multidimensional, time dependent, stochastic differential equations driven simultaneously by a multidimensional fractional Brownian motion with Hurst parameter H > 1/2 and a multidimensional standard Brownian motion. The proof relies on some a priori estimates, which are obtained using the methods of fractional integration and the classical Itô stochastic calculus. The existence result is based on the Yamada–Watanabe theorem.  相似文献   

7.
We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H>1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential equation driven by both fractional Brownian motions and the corresponding underlying standard Brownian motions. In addition to this backward equation, the maximum principle also involves the Malliavin derivatives. Our approach is to use conditioning and Malliavin calculus. To arrive at our maximum principle we need to develop some new results of stochastic analysis of the controlled systems driven by fractional Brownian motions via fractional calculus. Our approach of conditioning and Malliavin calculus is also applied to classical system driven by standard Brownian motions while the controller has only partial information. As a straightforward consequence, the classical maximum principle is also deduced in this more natural and simpler way.  相似文献   

8.
For a mixed stochastic differential equation driven by independent fractional Brownian motions and Wiener processes, the existence and integrability of the Malliavin derivative of the solution are established. It is also proved that the solution possesses exponential moments.  相似文献   

9.
In this paper we discuss existence and uniqueness results for BSDEs driven by centered Gaussian processes. Compared to the existing literature on Gaussian BSDEs, which mainly treats fractional Brownian motion with Hurst parameter H>1/2H>1/2, our main contributions are: (i) Our results cover a wide class of Gaussian processes as driving processes including fractional Brownian motion with arbitrary Hurst parameter H∈(0,1)H(0,1); (ii) the assumptions on the generator ff are mild and include e.g. the case when ff has (super-)quadratic growth in zz; (iii) the proofs are based on transferring the problem to an auxiliary BSDE driven by a Brownian motion.  相似文献   

10.
We study m-dimensional SDE , where {Wi}i?1 is an infinite sequence of independent standard d-dimensional Brownian motions. The existence and pathwise uniqueness of strong solutions to the SDE was established recently in [Z. Liang, Stochastic differential equations driven by countably many Brownian motions with non-Lipschitzian coefficients, Preprint, 2004]. We will show that the unique strong solution produces a stochastic flow of homeomorphisms if the modulus of continuity of coefficients is less than , ?∈[0,1) with ?(−1)=1, and the coefficients are compactly supported.  相似文献   

11.
In this paper, some properties of a stochastic convolution driven by tempered fractional Brownian motion are obtained. Based on this result, we get the existence and uniqueness of stochastic mean-field equation driven by tempered fractional Brownian motion. Furthermore, combining with the Banach fixed point theorem and the properties of Mittag-Leffler functions, we study the existence and uniqueness of mild solution for a kind of time fractional mean-field stochastic differential equation driven by tempered fractional Brownian motion.  相似文献   

12.
In this paper, we consider a class of stochastic delay fractional evolution equations driven by fractional Brownian motion in a Hilbert space. Sufficient conditions for the existence and uniqueness of mild solutions are obtained. An application to the stochastic fractional heat equation is presented to illustrate the theory. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
 In this paper we show, by using dyadic approximations, the existence of a geometric rough path associated with a fractional Brownian motion with Hurst parameter greater than 1/4. Using the integral representation of fractional Brownian motions, we furthermore obtain a Skohorod integral representation of the geometric rough path we constructed. By the results in [Ly1], a stochastic integration theory may be established for fractional Brownian motions, and strong solutions and a Wong-Zakai type limit theorem for stochastic differential equations driven by fractional Brownian motions can be deduced accordingly. The method can actually be applied to a larger class of Gaussian processes with covariance functions satisfying a simple decay condition. Received: 11 May 2000 / Revised version: 20 March 2001 / Published online: 11 December 2001  相似文献   

14.
In this paper, we first study the existence and uniqueness of solutions to the stochastic differential equations driven by fractional Brownian motion with non-Lipschitz coefficients. Then we investigate the explosion time in stochastic differential equations driven by fractional Browmian motion with respect to Hurst parameter more than half with small diffusion.  相似文献   

15.
Viability for differential equations driven by fractional Brownian motion   总被引:1,自引:0,他引:1  
In this paper we prove a viability result for multidimensional, time dependent, stochastic differential equations driven by fractional Brownian motion with Hurst parameter , using pathwise approach. The sufficient condition is also an alternative global existence result for the fractional differential equations with restrictions on the state.  相似文献   

16.
By proving the continuity of multi-dimensional Skorokhod maps in a quasi-linearly discounted uniform norm on the doubly infinite time interval R, and strengthening know sample path large deviation principles for fractional Brownian motion to this topology, we obtain large deviation principles for the image of multi-dimensional fractional Brownian motions under Skorokhod maps as an immediate consequence of the contraction principle. As an application, we explicitly calculate large deviation decay rates for steady-state tail probabilities of certain queueing systems in multi-dimensional heavy traffic models driven by fractional Brownian motions.  相似文献   

17.
This paper is devoted to solving one-dimensional backward stochastic differential equations (BSDEs), where the time horizon may be finite or infinite and the assumptions on the generator g are not necessary to be uniform on t. We first show the existence of the minimal solution for this kind of BSDEs with linear growth generators. Then, we establish a general comparison theorem for solutions of this kind of BSDEs with weakly monotonic and uniformly continuous generators. Finally, we give an existence and uniqueness result for solutions of this kind of BSDEs with uniformly continuous generators.  相似文献   

18.
In this paper, we study the fractional stochastic heat equation driven by fractional Brownian motions of the form $$ du(t,x)=\left(-(-\Delta)^{\alpha/2}u(t,x)+f(t,x)\right)dt +\sum\limits^{\infty}_{k=1} g^k(t,x)\delta\beta^k_t $$ with $u(0,x)=u_0$, $t\in[0,T]$ and $x\in\mathbb{R}^d$, where $\beta^k=\{\beta^k_t,t\in[0,T]\},k\geq1$ is a sequence of i.i.d. fractional Brownian motions with the same Hurst index $H>1/2$ and the integral with respect to fractional Brownian motion is Skorohod integral. By adopting the framework given by Krylov, we prove the existence and uniqueness of $L_p$-solution to such equation.  相似文献   

19.
This paper considers semilinear stochastic differential equations in Hilbert spaces with Lipschitz nonlinearities and with the noise terms driven by sequences of independent scalar Wiener processes (Brownian motions). The interpretation of such equations requires a stochastic integral. By means of a series of Itô integrals, an elementary and direct construction of a Hilbert space valued stochastic integral with respect to a sequence of independent scalar Wiener processes is given. As an application, existence and strong and weak uniqueness for the stochastic differential equation are shown by exploiting the series construction of the integral.  相似文献   

20.
This paper is concerned with the smoothness (in the sense of Meyer- Watanabe) of the local times of Gaussian random fields. Sufficient and necessary conditions for the existence and smoothness of the local times, collision local times, and self-intersection local times are established for a large class of Gaussian random fields, including fractional Brownian motions, fractional Brownian sheets and solutions of stochastic heat equations driven by space-time Gaussian noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号