首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.  相似文献   

2.
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.  相似文献   

3.
Atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) and ion trap mass spectrometry have been used to study the fragmentation behavior of native peptides and peptide derivatives prepared for de novo sequencing applications. Sulfonic acid derivatized peptides were observed to fragment more extensively and up to 28 times more efficiently than the corresponding native peptides. Tandem mass spectra of native peptides containing aspartic or glutamic acids are dominated by cleavage on the C-terminal side of the acidic residues. This significantly limits the amount of sequence information that can be derived from those compounds. The MS/MS spectra of native tryptic peptides containing oxidized Met residues show extensive loss of CH(3)SOH and little sequence-specific fragmentation. On the other hand, the tandem mass spectra of derivatized peptides containing Asp, Glu and oxidized Met show much more uniform fragmentation along the peptide backbone. The AP-MALDI tandem mass spectra of some derivatized peptides were shown to be qualitatively very similar to the corresponding vacuum MALDI postsource decay mass spectra, which were obtained on a reflector time-of-flight instrument. However, the ion trap mass spectrometer offers several advantages for peptide sequencing relative to current reflector time-of-flight instruments including improved product ion mass measurement accuracy, improved precursor ion selection and MS(n). These latter capabilities were demonstrated with solution digests of model proteins and with in-gel digests of 2D-gel separated proteins.  相似文献   

4.
We describe CHASE, a novel algorithm for automated de novo sequencing based on the mass spectrometric (MS) fragmentation analysis of tryptic peptides. This algorithm is used for protein identification from sequence similarity criteria and consists of four steps: (1) derivatization of tryptic peptides at the N-terminus with a negatively charged reagent; (2) post-source decay (PSD) fragmentation analysis of peptides; (3) interpretation of the mass peaks with the CHASE algorithm and reconstruction of the amino acid sequence; (4) transfer of these data to software for protein identifications based on sequence homology (Basic Local Alignment Search Tool, BLAST). This procedure deduced the correct amino acid sequence of tryptic peptide samples and also was able to deduce the correct sequence from difficult mass patterns and identify the amino acid sequence. This allows complete automation of the process starting from MS fragmentation of complex peptide mixtures at low concentration (e.g. from silver-stained gel bands) to identification of the protein. We also show that if PSD data are collected in a single spectrum (instead of the segmented mode offered by conventional matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) instrumentation), the complete workflow from MS-PSD data acquisition to similarity-based identification can be completely automated. This strategy may be applied to proteomic studies for protein identification based on automated de novo sequencing instead of MS or tandem MS patterns. We describe the Charge Assisted Sequencing Engine (CHASE) algorithm, the working protocol, the performance of the algorithm on spectra from MALDI-TOFMS and the data comparison between a TOF and a TOF-TOF instrument.  相似文献   

5.
An algorithm for interpretation of product ion spectra of peptides generated from ion trap mass spectrometry is developed for de novo amino acid sequencing of peptides for the purpose of protein identification. It is based on a multi-pass analysis of product ion data using a rigorous data extraction and sequence interpretation protocol in the initial pass. The extraction/interpretation algorithm becomes more relaxed in subsequent passes, considering more of the fragment ions, and potentially more sequence candidates. The possible peptide sequences generated by the algorithm are scored according to those sequences which best explain the fragment ion spectrum. These sequences are searched against a protein database using a BLAST search engine to find likely protein candidates. The method is also suitable for locating and determining protein modifications, and can be applied to de novo interpretation of peptide fragment ions in the tandem mass (MS/MS) spectrum produced from a mixture of two peptides having similar nominal mass, but different sequences. Using a known protein, bovine serum albumin, as an example, it is illustrated that this method is rapid and efficient for MS/MS spectral interpretation. This method combined with BLAST programs is then applied to search homologies and to generate information on post-translational modifications of an unknown protein isolated from shark cartilage that does not have a complete genome or proteome database.  相似文献   

6.
Derivatization of tryptic peptides using an Ettan CAF matrix-assisted laser desorption/ionization (MALDI) sequencing kit in combination with MALDI-post source decay (PSD) is a fast, accurate and convenient way to obtain de novo or confirmative peptide sequencing data. CAF (chemically assisted fragmentation) is based on solid-phase derivatization using a new class of water stable sulfonation agents, which strongly improves PSD analysis and simplifies the interpretation of acquired spectra. The derivatization is performed on solid supports, ZipTip(microC18, limiting the maximum peptide amount to 5 microg. By performing the derivatization in solution enabled the labeling of tryptic peptides derived from 100 microg of protein. To increase the number of peptides that could be sequenced, derivatized peptides were purified using multidimensional liquid chromatography (MDLC) prior to MALDI sequencing. Following the first dimension strong cation exchange (SCX) chromatography step, modified peptides were separated using reversed-phase chromatography (RPC). During the SCX clean up step, positively charged peptides are retained on the column while properly CAF-derivatized peptides (uncharged) are not. A moderately complex tryptic digest, prepared from six different proteins of equimolar amounts, was CAF-derivatized and purified by MDLC. Fractions from the second dimension nano RPC step were automatically sampled and on-line dispensed to MALDI sample plates and analyzed using MALDI mass spectrometry fragmentation techniques. All proteins in the derivatized protein mixture digest were readily identified using MALDI-PSD or MALDI tandem mass spectrometry (MS/MS). More than 40 peptides were unambiguously sequenced, representing a seven-fold increase in the number of sequenced peptides in comparison to when the CAF-derivatized protein mix digest was analyzed directly (no MDLC-separation) using MALDI-PSD. In conclusion, MDLC purification of CAF-derivatized peptides significantly increases the success rate for de novo and confirmative sequencing using various MALDI fragmentation techniques. This new approach is not only applicable to single protein digests but also to more complex digests and could, thus, be an alternative to electrospray ionization MS/MS for peptide sequencing.  相似文献   

7.
In this work, partial characterization of the primary structure of phycocyanin from the cyanobacterium Aphanizomenon flos‐aquae (AFA) was achieved by mass spectrometry de novo sequencing with the aid of chemical derivatization. Combining N‐terminal sulfonation of tryptic peptides by 4‐sulfophenyl isothiocyanate (SPITC) and MALDI‐TOF/TOF analyses, facilitated the acquisition of sequence information for AFA phycocyanin subunits. In fact, SPITC‐derivatized peptides underwent facile fragmentation, predominantly resulting in y‐series ions in the MS/MS spectra and often exhibiting uninterrupted sequences of 20 or more amino acid residues. This strategy allowed us to carry out peptide fragment fingerprinting and de novo sequencing of several peptides belonging to both α‐ and β‐phycocyanin polypeptides, obtaining a sequence coverage of 67% and 75%, respectively. The presence of different isoforms of phycocyanin subunits was also revealed; subsequently Intact Mass Measurements (IMMs) by both MALDI‐ and ESI‐MS supported the detection of these protein isoforms. Finally, we discuss the evolutionary importance of phycocyanin isoforms in cyanobacteria, suggesting the possible use of the phycocyanin operon for a correct taxonomic identity of this species. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Collision-induced dissociation of singly charged peptide ions produced by resonant excitation in a matrix-assisted laser desorption/ionization (MALDI) ion trap mass spectrometer yields relatively low complexity MS/MS spectra that exhibit highly preferential fragmentation, typically occurring adjacent to aspartyl, glutamyl, and prolyl residues. Although these spectra have proven to be of considerable utility for database-driven protein identification, they have generally been considered to contain insufficient information to be useful for extensive de novo sequencing. Here, we report a procedure for de novo sequencing of peptides that uses MS/MS data generated by an in-house assembled MALDI-quadrupole-ion trap mass spectrometer (Krutchinsky, Kalkum, and Chait Anal. Chem. 2001, 73, 5066-5077). Peptide sequences of up 14 amino acid residues in length have been deduced from digests of proteins separated by SDS-PAGE. Key to the success of the current procedure is an ability to obtain MS/MS spectra with high signal-to-noise ratios and to efficiently detect relatively low abundance fragment ions that result from the less favorable fragmentation pathways. The high signal-to-noise ratio yields sufficiently accurate mass differences to allow unambiguous amino acid sequence assignments (with a few exceptions), and the efficient detection of low abundance fragment ions allows continuous reads through moderately long stretches of sequence. Finally, we show how the aforementioned preferential cleavage property of singly charged ions can be used to facilitate the de novo sequencing process.  相似文献   

9.
We report the application of nanoelectrospray ionization tandem mass spectrometry (nES-MS/MS) and capillary LC/microelectrospray MS/MS (cLC/&mgr;ES-MS/MS) for sequencing sulfonic acid derivatized tryptic peptides. These derivatives were specifically prepared to facilitate low-energy charge-site-initiated fragmentation of C-terminal arginine-containing peptides, and to enhance the selective detection of a single series of y-type fragment ions. Both singly and doubly protonated peptides were analyzed by MS/MS and the results were compared with those from their derivatized counterparts. Model peptides and peptides from tryptic digests of gel-isolated proteins were analyzed. Derivatized singly protonated peptides fragment in the same way by nES-MS/MS as they do by post-source decay matrix-assisted laser desorption/ionization mass spectrometry (PSD-MALDI-MS). They produce fragment ion spectra dominated by y-ions, and the simplified spectra are readily interpreted de novo. Doubly protonated peptides fragment in much the same way as their non-derivatized doubly protonated counterparts. The fragmentation of doubly protonated derivatives is especially useful for sequencing peptides that possess a proline residue near the N-terminus of the molecule. The singly protonated forms of these proline-containing derivatives often show enhanced fragmentation on the N-terminal side of the proline and considerably reduced fragmentation on the C-terminal side. In addition, sulfonic acid derivatization increases the in-source fragmentation of arginine-containing peptides. This could be useful for sequence verification and sequence tagging for use in single stage mass spectrometry. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

10.
SeqMS, a software aid for de novo sequencing by tandem mass spectrometry (MS/MS), which was initially developed for the automated interpretation of high-energy collision-induced dissociation (CID) MS/MS spectra of peptides, has been applied to the interpretation of low-energy CID and post-source decay (PSD) spectra of peptides. Based on peptide backbone fragmented ions and their related ions, which are the dominant ions observed in the latter two techniques, the types of ions and their propensities to be observed have been optimized for efficient interpretation of the spectra. In a typical example, the modified SeqMS allowed the complete sequencing of a 31-amino acid synthetic peptide, except for the isobaric amino acids (Leu or Ile, and Lys or Gln), based on only the low-energy CID-MS/MS spectrum.  相似文献   

11.
An improved method of de novo peptide sequencing based on mass spectrometry using novel N-terminal derivatization reagents with high proton affinity has been developed. The introduction of a positively charged group into the N-terminal amino group of a peptide is known to enhance the relative intensity of b-ions in product ion spectra, allowing the easy interpretation of the spectra. However, the physicochemical properties of charge derivatization reagents required for efficient fragmentation remain unclear. In this study, we prepared several derivatization reagents with high proton affinity, which are thought to be appropriate for peptide fragmentation under low-energy collision-induced dissociation (CID) conditions, and examined their usefulness in de novo peptide sequencing. Comparison of the effects on fragmentation among three derivatization reagents having a guanidino or an amidino moiety, which differ in proton affinity, clearly indicated that there was an optimal proton affinity for efficient fragmentation of peptides. Among reagents tested in this study, derivatization with 4-amidinobenzoic acid brought about the most effective fragmentation. This derivatization approach will offer a novel de novo peptide sequencing method under low-energy CID conditions.  相似文献   

12.
Comparative MS/MS studies of singly and doubly charged electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) precursor peptide ions are described. The spectra from these experiments have been evaluated with particular emphasis on the data quality for subsequent data processing and protein/amino acid sequence identification. It is shown that, once peptide ions are formed by ESI or MALDI, their charge state, as well as the collision energy, is the main parameter determining the quality of collision-induced dissociation (CID) MS/MS fragmentation spectra of a given peptide. CID-MS/MS spectra of singly charged peptides obtained on a hybrid quadrupole orthogonal time-of-flight mass spectrometer resemble very closely spectra obtained by matrix-assisted laser desorption/ionization post-source decay time-of-flight mass spectrometry (MALDI-PSD-TOFMS). On the other hand, comparison of CID-MS/MS spectra of either singly or doubly charged ion species shows no dependence on whether ions have been formed by ESI or MALDI. This observation confirms that, at the time of precursor ion selection, further mass analysis is effectively decoupled from the desorption/ionization event. Since MALDI ions are predominantly formed as singly charged species and ESI ions as doubly charged, the associated difference in the spectral quality of MS/MS spectra as described here imposes direct consequences on data processing, database searching using ion fragmentation data, and de novo sequencing when ionization techniques are changed.  相似文献   

13.
Guanidination of the epsilon-amino group of lysine-terminated tryptic peptides can be accomplished selectively in one step with O-methylisourea hydrogen sulfate. This reaction converts lysine residues into more basic homoarginine residues. It also protects the epsilon-amino groups against unwanted reaction with sulfonation reagents, which can then be used to selectively modify the N-termini of tryptic peptides. The combined reactions convert lysine-terminated tryptic peptides into modified peptides that are suitable for de novo sequencing by postsource decay matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The guanidination reaction is very pH dependent. Product yields and reaction kinetics were studied in aqueous solution using either NaOH or diisopropylethylamine as the base. Methods are reported for derivatizing and sequencing lysine-terminated tryptic peptides at low pmole levels. The postsource decay (PSD) MALDI tandem mass spectra of a model peptide (VGGYGYGAK), the homoarginine analog and the sulfonated homoarginine analog are compared. These spectra show the influence that each chemical modification has on the peptide fragmentation pattern. Finally, we demonstrate that definitive protein identifications can be achieved by PSD MALDI sequencing of derivatized peptides obtained from solution digests of model proteins and from in-gel digests of 2D-gel separated proteins.  相似文献   

14.
Optimized procedures have been developed for the addition of sulfonic acid groups to the N-termini of low-level peptides. These procedures have been applied to peptides produced by tryptic digestion of proteins that have been separated by two-dimensional (2-D) gel electrophoresis. The derivatized peptides were sequenced using matrix-assisted laser desorption/ionization (MALDI) post-source decay (PSD) and electrospray ionization-tandem mass spectrometry methods. Reliable PSD sequencing results have been obtained starting with sub-picomole quantities of protein. We estimate that the current PSD sequencing limit is about 300 fmol of protein in the gel. The PSD mass spectra of the derivatized peptides usually allow much more specific protein sequence database searches than those obtained without derivatization. We also report initial automated electrospray ionization-tandem mass spectrometry sequencing of these novel peptide derivatives. Both types of tandem mass spectra provide predictable fragmentation patterns for arginine-terminated peptides. The spectra are easily interpreted de novo, and they facilitate error-tolerant identification of proteins whose sequences have been entered into databases.  相似文献   

15.
By screening a data set of 392 synthetic peptides MS/MS spectra, we found that a known C-terminal rearrangement was unexpectedly frequently occurring from monoprotonated molecular ions in both ESI and MALDI tandem mass spectrometry upon low and high energy collision activated dissociations with QqTOF and TOF/TOF mass analyzer configuration, respectively. Any residue localized at the C-terminal carboxylic acid end, even a basic one, was lost, provided that a basic amino acid such arginine and to a lesser extent histidine and lysine was present in the sequence leading to a fragment ion, usually depicted as (bn-1 + H2O) ion, corresponding to a shortened non-scrambled peptide chain. Far from being an epiphenomenon, such a residue exclusion from the peptide chain C-terminal extremity gave a fragment ion that was the base peak of the MS/MS spectrum in certain cases. Within the frame of the mobile proton model, the ionizing proton being sequestered onto the basic amino acid side chain, it is known that the charge directed fragmentation mechanism involved the C-terminal carboxylic acid function forming an anhydride intermediate structure. The same mechanism was also demonstrated from cationized peptides. To confirm such assessment, we have prepared some of the peptides that displayed such C-terminal residue exclusion as a C-terminal backbone amide. As expected in this peptide amide series, the production of truncated chains was completely suppressed. Besides, multiply charged molecular ions of all peptides recorded in ESI mass spectrometry did not undergo such fragmentation validating that any mobile ionizing proton will prevent such a competitive C-terminal backbone rearrangement. Among all well-known nondirect sequence fragment ions issued from non specific loss of neutral molecules (mainly H2O and NH3) and multiple backbone amide ruptures (b-type internal ions), the described C-terminal residue exclusion is highly identifiable giving raise to a single fragment ion in the high mass range of the MS/MS spectra. The mass difference between this signal and the protonated molecular ion corresponds to the mass of the C-terminal residue. It allowed a straightforward identification of the amino acid positioned at this extremity. It must be emphasized that a neutral residue loss can be misattributed to the formation of a ym-1 ion, i.e., to the loss of the N-terminal residue following the a1-ym–1 fragmentation channel. Extreme caution must be adopted when reading the direct sequence ion on the positive ion MS/MS spectra of singly charged peptides not to mix up the attribution of the N- and C-terminal amino acids. Although such peculiar fragmentation behavior is of obvious interest for de novo peptide sequencing, it can also be exploited in proteomics, especially for studies involving digestion protocols carried out with proteolytic enzymes other than trypsin (Lys-N, Glu-C, and Asp-N) that produce arginine-containing peptides.  相似文献   

16.
Electrospray mass spectrometry (ES/MS) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF/MS) were used to provide mass spectra from seven elapid snake venoms. Spectral interpretation was much simpler for MALDI/TOF/MS. ES/MS proved more useful for the provision of molecular weight data for very closely related peptides, but suppression of higher molecular weight compounds was seen to occur during flow injection analysis. MALDI/TOF/MS proved useful for providing a complete picture of the venom, but the low resolution led to obscuring of major ions, and the mass accuracy was poorer for known peptides. Suppression also occurred during MALDI/TOF/MS but could be overcome using alternative matrices because the spectra were very dependent on the choice of matrix. ES/MS and MALDI/TOF/MS provide complementary and confirmatory information such that for the anal sis of complex peptide mixtures (snake venoms), the use of both techniques is desirable.  相似文献   

17.
A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics   总被引:7,自引:0,他引:7  
A new matrix-assisted laser-desorption/ionization time-of-flight/time-of-flight mass spectrometer with the novel "LIFT" technique (MALDI LIFT-TOF/TOF MS) is described. This instrument provides high sensitivity (attomole range) for peptide mass fingerprints (PMF). It is also possible to analyze fragment ions generated by any one of three different modes of dissociation: laser-induced dissociation (LID) and high-energy collision-induced dissociation (CID) as real MS/MS techniques and in-source decay in the reflector mode of the mass analyzer (reISD) as a pseudo-MS/MS technique. Fully automated operation including spot picking from 2D gels, in-gel digestion, sample preparation on MALDI plates with hydrophilic/hydrophobic spot profiles and spectrum acquisition/processing lead to an identification rate of 66% after the PMF was obtained. The workflow control software subsequently triggered automated acquisition of multiple MS/MS spectra. This information, combined with the PMF increased the identification rate to 77%, thus providing data that allowed protein modifications and sequence errors in the protein sequence database to be detected. The quality of the MS/MS data allowed for automated de novo sequencing and protein identification based on homology searching.  相似文献   

18.
Improving the sensitivity of detection and fragmentation of peptides to provide reliable sequencing of peptides is an important goal of mass spectrometric analysis. Peptides derivatized by bicyclic quaternary ammonium ionization tags: 1‐azabicyclo[2.2.2]octane (ABCO) or 1,4‐diazabicyclo[2.2.2]octane (DABCO), are characterized by an increased detection sensitivity in electrospray ionization mass spectrometry (ESI‐MS) and longer retention times on the reverse‐phase (RP) chromatography columns. The improvement of the detection limit was observed even for peptides dissolved in 10 mM NaCl. Collision‐induced dissociation tandem mass spectrometry of quaternary ammonium salts derivatives of peptides showed dominant a‐ and b‐type ions, allowing facile sequencing of peptides. The bicyclic ionization tags are stable in collision‐induced dissociation experiments, and the resulted fragmentation pattern is not significantly influenced by either acidic or basic amino acid residues in the peptide sequence. Obtained results indicate the general usefulness of the bicyclic quaternary ammonium ionization tags for ESI‐MS/MS sequencing of peptides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Matrix-assisted laser desorption/ionization two-stage time-of-flight (MALDI-TOF/TOF) tandem mass spectrometry (MS/MS) was applied to characterize permethylated oligosaccharides. Under these ionization conditions such derivatives yield intense signals corresponding to sodium-cationized molecular species. A systematic study was conducted on a series of neutral and sialylated permethylated oligosaccharides to allow rationalization of the fragmentation processes. The major fragments observed in the MALDI-TOF/TOF-MS/MS spectra result from cleavage of glycosidic bonds, preferentially at N-acetylhexosamine and sialic acid residues. The fragments originating from both the reducing and the non-reducing ends of the glycan yield information on sequence and branching. Cross-ring cleavages, which are very informative of the linkages of the monosaccharide residues constituting these oligosaccharides, and 'internal' cleavage ions which are derived from elimination of substituents from around the pyranose ring, were also observed. This extensive fragmentation was shown to be useful for the structural characterization of oligosaccharides. MALDI-TOF/TOF-MS/MS of permethylated oligosaccharides appears to be a powerful tool for carbohydrate structural analysis.  相似文献   

20.
A one-step phosphoryl derivatization method has been used in a peptide sequencing procedure for electrospray ionization tandem mass spectrometry (ESI-MS/MS). The sodiated derivatized peptides exhibit very simple dissociation patterns, in which two kinds of fragment ions, [b(n) + OH + Na]+ and [a(n) + Na]+, are formed. Since the amino acid residues are lost sequentially from the C-terminus, peptide sequences can be identified easily. The fragmentation efficiency of peptides increased as a result of the phosphorylation, and also provided peaks of useful intensity at lower m/z. A peptide with lysine at the C-terminus was derivatized and analyzed by ESI-MS/MS. Similar mass spectra, from which the sequence could be read out, were obtained. This is a novel derivatization method yielding neutral derivatives that should be suitable for peptide sequencing by LC/ESI-MS/MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号