首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
We report on the application of the Poincaré transformation (from the theory of adaptive geometric integrators) to nonholonomic systems—mechanical systems with non-integrable velocity constraints. We prove that this transformation can be used to express the dynamics of certain nonholonomic systems at a fixed energy value in Hamiltonian form; examples and potential applications are also discussed.  相似文献   

2.
Integrators for Nonholonomic Mechanical Systems   总被引:1,自引:0,他引:1  
We study a discrete analog of the Lagrange-d'Alembert principle of nonhonolomic mechanics and give conditions for it to define a map and to be reversible. In specific cases it can generate linearly implicit, semi-implicit, or implicit numerical integrators for nonholonomic systems which, in several examples, exhibit superior preservation of the dynamics. We also study discrete nonholonomic systems on Lie groups and their reduction theory, and explore the properties of the exact discrete flow of a nonholonomic system.  相似文献   

3.
研究非Chetaev型非完整系统的Lie对称性与Noether对称性,具体研究了非Chetaev型常 质量非完整系统和非Chetaev型变质量非完整系统的Lie对称性与Noether对称性.给出Lie对称 性导致Noether对称性以及Noether对称性导致Lie对称性的条件.  相似文献   

4.
准坐标下非完整力学系统的Lie对称性和守恒量   总被引:2,自引:0,他引:2  
研究准坐标下非完整系统的Lie对称性,首先,对准坐标下非完整力学系统定义无限小变换生成元,由微分方程在无限小变换下的不变性,建立Lie对称性的确定方程,得到结构方程并求出守恒量;其次,研究上述问题的逆问题;根据已知积分求相应的Lie对称性,举例说明结果的应用。  相似文献   

5.
In this paper, we develop the theoretical foundations of discrete Dirac mechanics, that is, discrete mechanics of degenerate Lagrangian/Hamiltonian systems with constraints. We first construct discrete analogues of Tulczyjew’s triple and induced Dirac structures by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving discrete Lagrange–Dirac and nonholonomic Hamiltonian systems. In particular, this yields nonholonomic Lagrangian and Hamiltonian integrators. We also introduce discrete Lagrange–d’Alembert–Pontryagin and Hamilton–d’Alembert variational principles, which provide an alternative derivation of the same set of integration algorithms. The paper provides a unified treatment of discrete Lagrangian and Hamiltonian mechanics in the more general setting of discrete Dirac mechanics, as well as a generalization of symplectic and Poisson integrators to the broader category of Dirac integrators.  相似文献   

6.
In this paper, structure-preserving time-integrators for rigid body-type mechanical systems are derived from a discrete Hamilton–Pontryagin variational principle. From this principle, one can derive a novel class of variational partitioned Runge–Kutta methods on Lie groups. Included among these integrators are generalizations of symplectic Euler and Störmer–Verlet integrators from flat spaces to Lie groups. Because of their variational design, these integrators preserve a discrete momentum map (in the presence of symmetry) and a symplectic form. In a companion paper, we perform a numerical analysis of these methods and report on numerical experiments on the rigid body and chaotic dynamics of an underwater vehicle. The numerics reveal that these variational integrators possess structure-preserving properties that methods designed to preserve momentum (using the coadjoint action of the Lie group) and energy (for example, by projection) lack.  相似文献   

7.
研究相空间中单面非Chetaev型非完整系统的Lie对称性与守恒量.首先根据微分方程在无限小变换下的不变性建立Lie对称性所满足的确定方程和限制方程,给出结构方程和守恒量;其次讨论系统的Lie对称性逆问题;最后举一实例说明结果的应用.  相似文献   

8.
具有单面非完整约束的力学系统的Lie对称性与守恒量   总被引:7,自引:0,他引:7  
研究具有单面非完整约束的力学系统的Lie对称性。给出由Lie对称性得到系统守恒量的条件和守恒量的形式,并研究上述问题的逆问题,即根据系统的已知积分来求相应的Lie对称性,最后举例说明结果的应用。  相似文献   

9.
Arne Lorenz 《Acta Appl Math》2008,101(1-3):205-213
A jet groupoid ℛ q over a manifold X is a special Lie groupoid consisting of q-jets of local diffeomorphisms XX. As a subbundle of J q (X,X), a jet groupoid can be considered as a system of nonlinear partial differential equations (PDE). This leads to the question if ℛ q is formally integrable. On the other hand, each jet groupoid is the symmetry groupoid of a geometric object, which is a section ω of a natural bundle ℱ. Using the jet groupoids, we give a local characterisation of formal integrability for transitive jet groupoids in terms of their corresponding geometric objects. Thanks to M. Barakat and W. Plesken for discussions. The author was supported by DFG Grant Graduiertenkolleg 775.  相似文献   

10.
ON NONLINEAR DIFFERENTIAL GALOIS THEORY   总被引:5,自引:0,他引:5  
This Is an accom ofa work In course ofprogress.The aim Is the following:  相似文献   

11.

We introduce energy-preserving integrators for nonholonomic mechanical systems. We will see that the nonholonomic dynamics is completely determined by a triple \(({{\mathcal {D}}}^*, \varPi , \mathcal {H})\), where \({{\mathcal {D}}}^*\) is the dual of the vector bundle determined by the nonholonomic constraints, \(\varPi \) is an almost-Poisson bracket (the nonholonomic bracket) and \( \mathcal {H}: {{\mathcal {D}}}^*\rightarrow \mathbb {R}\) is a Hamiltonian function. For this triple, we can apply energy-preserving integrators, in particular, we show that discrete gradients can be used in the numerical integration of nonholonomic dynamics. By construction, we achieve preservation of the constraints and of the energy of the nonholonomic system. Moreover, to facilitate their applicability to complex systems which cannot be easily transformed into the aforementioned almost-Poisson form, we rewrite our integrators using just the initial information of the nonholonomic system. The derived procedures are tested on several examples: a chaotic quartic nonholonomic mechanical system, the Chaplygin sleigh system, the Suslov problem and a continuous gearbox driven by an asymmetric pendulum. Their performance is compared with other standard methods in nonholonomic dynamics, and their merits verified in practice.

  相似文献   

12.
This paper develops numerical methods for optimal control of mechanical systems in the Lagrangian setting. It extends the theory of discrete mechanics to enable the solutions of optimal control problems through the discretization of variational principles. The key point is to solve the optimal control problem as a variational integrator of a specially constructed higher dimensional system. The developed framework applies to systems on tangent bundles, Lie groups, and underactuated and nonholonomic systems with symmetries, and can approximate either smooth or discontinuous control inputs. The resulting methods inherit the preservation properties of variational integrators and result in numerically robust and easily implementable algorithms. Several theoretical examples and a practical one, the control of an underwater vehicle, illustrate the application of the proposed approach.  相似文献   

13.
This paper studies hamiltonization of nonholonomic systems using geometric tools, building on [1], [5]. The main novelty in this paper is the use of symmetries and suitable first integrals of the system to explicitly define a new bracket on the reduced space that codifies the nonholonomic dynamics and carries, additionally, an almost symplectic foliation (determined by the common level sets of the first integrals); in particular cases of interest, this new bracket is a Poisson structure that hamiltonizes the system. Our construction of the new bracket is based on a gauge transformation of the nonholonomic bracket by a global 2-form that we explicitly describe. We study various geometric features of the reduced brackets and apply our formulas to obtain a geometric proof of the hamiltonization of a homogeneous ball rolling without sliding in the interior side of a convex surface of revolution.  相似文献   

14.
《Indagationes Mathematicae》2014,25(5):1135-1153
We revisit the cohomological index theorem for elliptic elements in the universal enveloping algebra of a Lie groupoid previously proved by the authors. We prove a Thom isomorphism for Lie algebroids which enables us to rewrite the “topological side” of the index theorem. This results in index formulae for Lie groupoid analogues of the familiar geometric operators on manifolds such as the signature and Dirac operator expressed in terms of the usual characteristic classes in Lie algebroid cohomology.  相似文献   

15.
Reduction of almost Poisson brackets for nonholonomic systems on Lie groups   总被引:1,自引:1,他引:0  
We present a systematic geometric construction of reduced almost Poisson brackets for nonholonomic systems on Lie groups with invariant kinetic energy metric and constraints. Our construction is of geometric interest in itself and is useful in the hamiltonization of some classical examples of nonholonomic mechanical systems.   相似文献   

16.
17.
Variational integrators are derived for structure-preserving simulation of stochastic Hamiltonian systems with a certain type of multiplicative noise arising in geometric mechanics. The derivation is based on a stochastic discrete Hamiltonian which approximates a type-II stochastic generating function for the stochastic flow of the Hamiltonian system. The generating function is obtained by introducing an appropriate stochastic action functional and its corresponding variational principle. Our approach permits to recast in a unified framework a number of integrators previously studied in the literature, and presents a general methodology to derive new structure-preserving numerical schemes. The resulting integrators are symplectic; they preserve integrals of motion related to Lie group symmetries; and they include stochastic symplectic Runge–Kutta methods as a special case. Several new low-stage stochastic symplectic methods of mean-square order 1.0 derived using this approach are presented and tested numerically to demonstrate their superior long-time numerical stability and energy behavior compared to nonsymplectic methods.  相似文献   

18.

The theory of feedback integrators is extended to handle mechanical systems with nonholonomic constraints with or without symmetry, so as to produce numerical integrators that preserve the nonholonomic constraints as well as other conserved quantities. To extend the feedback integrators, we develop a suitable extension theory for nonholonomic systems and also a corresponding reduction theory for systems with symmetry. It is then applied to various nonholonomic systems such as the Suslov problem on \({\text {SO}}(3)\), the knife edge, the Chaplygin sleigh, the vertical rolling disk, the roller racer, the Heisenberg system, and the nonholonomic oscillator.

  相似文献   

19.
This paper develops the theory of Dirac reduction by symmetry for nonholonomic systems on Lie groups with broken symmetry. The reduction is carried out for the Dirac structures, as well as for the associated Lagrange–Dirac and Hamilton–Dirac dynamical systems. This reduction procedure is accompanied by reduction of the associated variational structures on both Lagrangian and Hamiltonian sides. The reduced dynamical systems obtained are called the implicit Euler–Poincaré–Suslov equations with advected parameters and the implicit Lie–Poisson–Suslov equations with advected parameters. The theory is illustrated with the help of finite and infinite dimensional examples. It is shown that equations of motion for second order Rivlin–Ericksen fluids can be formulated as an infinite dimensional nonholonomic system in the framework of the present paper.  相似文献   

20.
In this paper we give a geometric interpretation of the notion of the horizontal mean curvature which is introduced by Danielli Garofalo-Nhieu and Pauls who recently introduced sub- Riemannian minimal surfaces in Carnot groups. This will be done by introducing a natural nonholonomic connection which is the restriction (projection) of the natural Riemannian connection on the horizontal bundle. For this nonholonomic connection and (intrinsic) regular hypersurfaces we introduce the notions of the horizontal second fundamental form and the horizontal shape operator. It turns out that the horizontal mean curvature is the trace of the horizontal shape operator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号