首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using a sol-gel processing and electrospinning technique, extrathin fibers of PVA (polyvinyl alcohol)/lithium chloride/cobalt acetate composite were prepared. After calcinations of the above precursor fibers at 600°C, LiCoO2 nanofibers with a diameter of 100-150 nm, were successfully obtained. Measurements of TG/DTA, IR, XRD, Raman, SEM, EDS, respectively, were performed to characterize the properties of the as-prepared materials. We observed a strong correlation between crystalline phase and morphology of the fibers and calcinations temperature.  相似文献   

2.
The Fe alloy-ferrite composites Fe-Co/Fe3O4 are synthesized by using disproportion of Fe (II) and reduction of Co (II) by Fe0 in a concentrated and boiling KOH solution. The Fe alloy and ferrites are prepared in aqueous solution without any templet and surfactants at low temperature. Their structures and magnetic properties are investigated by X-ray diffractometer (XRD) and vibrating sample magnetometer (VSM). From the results of XRD, it is shown that the samples have b.c.c and f.c.c structure of Fe, and the spinel structures of the ferrite before calcinations; the samples have b.c.c and spinel structures after calcinations at 300 °C; and the samples have only f.c.c structure and the spinel structures calcined at 500 °C.  相似文献   

3.
The sol-gel dip-coating method is used for the preparation of MoO3 thin films. The 6 layered MoO3 films were prepared and annealed at various temperatures in the range of 200-350 °C. The band gap value for MoO3 films were calculated from optical absorption measurements and it is in the range of 3.55-3.73 eV. XRD spectrum reveals (0 2 0) is the major diffraction plane for the films prepared above 250 °C, which reveals the formation of MoO3 in α-orthorhombic phase. The films prepared at 200 °C and 250 °C exhibits amorphous nature. The FTIR spectrum confirms the presence of Mo-O-Mo and MoO bonds. Nanorods were observed in the SEM images in the case of MoO3 films prepared above 250 °C. The films prepared at 250 °C exhibit maximum anodic diffusion coefficient of 9.61 × 10−11 cm2/s. The same film exhibits the change in optical transmission of 58.4% at 630 nm with the optical density of 0.80.  相似文献   

4.
The Ce6−xYxMoO15−δ solid solution with fluorite-related structure have been characterized by differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), IR, Raman, scanning electric microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods. The electric conductivity of samples is investigated by Ac impedance spectroscopy. An essentially pure oxide-ion conductivity of the oxygen-deficiency was observed in pure argon, oxygen and air. The highest oxygen-ion conductivity was found in Ce5.5Y0.5MoO15−δ ranging from 5.9×10−5 (S cm−1) at 300 °C to 1.3×10−2 (S cm−1) at 650 °C, respectively. The oxide-ion conductivities remained stable over 80 h-long test at 800 °C. These properties suggested that significant oxide-ionic conductivity exists in these materials at moderately elevated temperatures.  相似文献   

5.
Rare earth doped NaLa(WO4)2 nanoparticles have been prepared by a simply hydrothermal synthesis procedure. The X-ray diffraction (XRD) pattern shows that the Eu3+-doped NaLa(WO4)2 nanoparticles with an average size of 10-30 nm can be obtained via hydrothermal treatment for different time at 180 °C. The luminescence intensity of Eu3+-doped NaLa(WO4)2 nanoparticles depended on the size of the nanoparticles. The bright upconversion luminescence of the 2 mol% Er3+ and 20 mol% Yb3+ codoped NaLa(WO4)2 nanoparticles under 980 nm excitation could also be observed. The Yb3+-Er3+ codoped NaLa(WO4)2 nanoparticles prepared by the hydrothermal treatment at 180 °C and then heated at 600 °C shows a 20 times stronger upconversion luminescence than those prepared by hydrothermal treatment at 180 °C or by hydrothermal treatment at 180 °C and then heated at 400 °C.  相似文献   

6.
Double perovskite Sr2FeMoO6 powders with small crystallite size have been synthesised with citrate-gel method. The starting solution pH was varied between 1.5 and 9.0 resulting in large differences in the phase composition and ordering of B/B sites. The samples prepared at 975 °C had crystallite sizes under 40 nm whereas crystallite sizes of the samples prepared at 1050 °C were between 78 and 239 nm. The XRD patterns were refined with spacegroup I 4/m, which gave good results for both batches, although clearly better results were obtained with monoclinic P 21/n spacegroup for the 975 °C batch. The ordering and the saturation magnetization agreed well with each other after treatment at 1050 °C, but the samples prepared at 975 °C had a strongly reduced saturation magnetization from that given by the ordering.  相似文献   

7.
The Bi3SbO7 ceramic was prepared by the solid state reaction method and its phase evolution at different temperatures was studied. Low temperature phase α-Bi3SbO7 was formed at about 890 °C and it started to transform to high temperature phase β-Bi3SbO7 at about 960 °C. Microwave dielectric constants of α-Bi3SbO7 ceramic and β-Bi3SbO7 ceramic were 43.2 and 37.6, Qf value were 2080 and 5080 GHz, respectively. TCF of α-Bi3SbO7 ceramic was near zero and TCF of β-Bi3SbO7 ceramic was about −120 ppm/°C. The Bi3SbO7 ceramic is a promising candidate for low temperature co-fired ceramic (LTCC) technology due to its large dielectric constant, low dielectric loss at microwave region, low sintering temperature and simple composition.  相似文献   

8.
PAni nanofibers synthesized by interfacial polymerization were reinforced in the PMMA matrix in different weight ratios. Randomly oriented polyaniline nanofibers were observed in the TEM image with diameter ranging from 20 to 30 nm. The SEM revealed the microstructure of the fiber reinforced composites showing better connectivity. The XRD spectra of the composites showed peaks at 2θ=17.05°, 20.3°, 27.15° and 30.05° that were indexed in a pseudo-orthorhombic unit cell. The dielectric constant measured over a frequency range of 42 Hz-1 MHz and in the temperature range of 303-373 K showed dependence upon frequency, temperature and concentration of the conducting nanofibers in the composites. The ac conductivity (σac) was interpreted as a power law of frequency. The frequency exponent s was found to lie in the range from 0.4 to 0.65 and decreased with the increase in temperature, which suggested that correlated barrier hopping (CBH) was the dominant charge transport mechanism. Existence of polarons as major charge carriers was confirmed by the low values of polaron binding energy (WM). Decrease in the values of density of states N(EF) with the increase in PAni nanofiber concentration indicated increased delocalization of electronic states in the band gap causing the increase in ac conductivity.  相似文献   

9.
Tin oxide has been prepared by thermal oxidation of evaporated tin thin films onto pyrex glass substrates. Films oxidation was achieved in air at a temperature of 600 °C with varied duration from 20min to 3 h. Structural, optical and electrical properties of the films were characterized by means of X-ray diffraction, UV–vis spectroscopy and electrical resistivity measurements respectively. The X-ray analysis revealed the transformation of Sn into SnO2 with preferential orientation along (101) plans. No intermediate phases such as SnO and Sn3O4 were evidenced. It was also found that the SnO2 crystallites orientation changed with the annealing time due to the strain energy effect. Both band gap energy and electrical resistivity decrease with annealing time due to the crystalline quality improvement and films densification. We have noticed that oxidation at 600 °C for 3 h leads to transparent and conductive films with suitable properties for photovoltaic applications.  相似文献   

10.
Nano-sized Tb-doped YAG phosphor particles were synthesized by a mixed solvo-thermal method using stoichiometric amounts of inorganic aluminum and yttrium salts. The formation of YAG:Tb was investigated by means of XRD and IR spectra. The pure crystalline-phase YAG was prepared under moderate synthesis conditions (300 °C and 10 MPa), indicating that ethanol partly replaces water as the solvent, thus favoring the formation of YAG. TEM images showed that YAG:Tb phosphor particles sintered at 300 °C were basically of spherical shape, with good dispersion about a particle size of around 80 nm. The crystalline YAG:Tb showed green emission with 5D47F6 (544 nm) as the most prominent group. The PL intensity and crystallinity of YAG:Tb phosphors increases with increasing synthesis temperature, and reaches maximum brightness at 300 °C, which is lower than that exhibited by a commercial product.  相似文献   

11.
Nanocrystalline alumina powder was produced from calcinations of Al13-oxalate precipitates at 1100 °C. A nearly normal distribution of agglomerated alumina powder was obtained with an average particle size of about 1 μm. XRD measurement confirmed that the alumina produced was of high purity and crystalline α-phase. Microstructural features of both the precipitates and alumina obtained were studied using the small angle neutron scattering (SANS) technique. SANS examinations show the formation of microstructures in the alumina powder of mass fractals type with dimension of ∼2.8 indicative of low intra-granular porosity.  相似文献   

12.
SnO2-ZnO hollow nanofibers were fabricated through a facile single capillary electrospinning technology. The structure and toluene sensing properties of the hollow fibers were investigated. The results indicated that the fibers possess a hollow structure, a rough porous surface after being annealed at 600 °C and the diameters are in the range of 80-160 nm. A sensor fabricated from these fibers exhibits considerable sensitivity and good stability against toluene at 190 °C, which can be attributed to the special 1D hollow structure and the promoting effect of the SnO2/ZnO heterojunction. The formation mechanism and toluene sensing mechanism of SnO2-ZnO hollow nanofibers were also discussed.  相似文献   

13.
A porous mullite-matrix composite with a bimodal pore structure has been prepared by a freeze casting route using water/coal fly slurry system. The top and bottom parts of the sintered freeze cast body consisted of solid particles and micropores, which were irregularly distributed. However, the middle section was made up of small lamellar pores and porous ceramic walls, aligned along the solidification direction. The porosity of mullite composites was in the range 67-55% after sintering at 1300-1500 °C. The addition of 3Y-ZrO2 reduced the porosity, especially material in sintered at 1500 °C due to relatively high densification. The compressive strength of the porous composite with 10 wt% 3Y-ZrO2 addition, sintered at 1500 °C exhibited a maximum value of ∼41 MPa.  相似文献   

14.
Composite nanofibers with a weight ratio of 30%NiO-70%SiO2 and diameters ranging from 80 to 100 nm were successfully prepared by electrospinning a precursor mixture of polyvinyl alcohol (PVA)/silica/nickel acetate followed by calcination treatment of the electrospun polymer/inorganic composite fibers. The resulting NiO/SiO2 composite nanofibers were characterized by TG-DTA, FT-IR spectroscopy, X-ray diffraction and scanning electron microscopy . The results revealed that the crystalline phase of NiO nanoparticles were formed at a temperature higher than 600 °C. The SEM results show that the morphology of the fibers is affected greatly by the calcination temperature.  相似文献   

15.
Electrodeposition was employed to fabricate magnetite (Fe3O4) coated carbon fibers (MCCFs). Temperature and fiber surface pretreatment had a significant influence on the composition and morphology of Fe3O4 films. Uniform and compact Fe3O4 films were fabricated at 75 °C on both nitric acid treated and untreated carbon fibers, while the films prepared at 60 °C were continuous and rough. Microwave measurements of MCCF/paraffin composites (50 wt.% of MCCFs, pretreated carbon fibers as deposition substrates) were carried out in the 2-18 GHz frequency range. MCCFs prepared at 60 °C obtained a much higher loss factor than that prepared at 75 °C. However, the calculation results of reflection loss were very abnormal that MCCFs prepared at 60 °C almost had no absorption property. While MCCFs prepared at 75 °C exhibited a good absorption property and obtained −10 dB and −20 dB refection loss in wide matching thickness ranges (1.0-6.0 mm and 1.7-6.0 mm range, respectively). A secondary attenuation peak could also be observed when the thickness of MCCF/paraffin composite exceeded 4.0 mm. The minimum reflection loss was lower.  相似文献   

16.
Gel polymer electrolytes (GPE) obtained by immobilizing a solution of zinc triflate (ZnTr) in an ionic liquid, namely 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [emim][Tf2N] within a biodegradable polymeric matrix of poly-ε-caprolactone (PCL) were prepared by a simple solvent cast technique for different concentrations of the ionic liquid. The electrolyte with the composition 75 wt% PCL: 25 wt% ZnTr+100 wt% [emim][Tf2N] showed the highest ionic conductivity of 1.1×10−4 S cm−1 at 25 °C and favored by the rich amorphous phase of the GPE as confirmed from room temperature X-ray diffraction analysis (XRD). The morphology of the GPE was examined using scanning electron microscopy (SEM) which revealed the homogeneity of the prepared GPE system. The temperature dependence of electrical conductivity of the GPE followed the Arrhenius behavior. The Zn2+ ionic transport number has been determined to be ~0.62 which denotes the predominant contribution of zinc ion towards total ionic conductivity. The electrochemical stability window of GPE is found to be 2.5 V with a thermal stability upto 200 °C. This eco-friendly and safe electrolyte may be used to fabricate compostable batteries, in future, with a suitable selection of other components of the battery system.  相似文献   

17.
La0.875Ba0.125FeO3 nanocrystalline powders have been prepared by a sol-gel method. The structure, conductance and gas-sensing properties were investigated. La0.875Ba0.125FeO3 crystallizes as a perovskite phase with the orthorhombic structure. The La0.875Ba0.125FeO3 based sensor shows good sensitivity and selectivity to alcohol gas. The highest sensitivity to 500 ppm alcohol gas reached was 58 at 170 °C. The adsorption of O2 on the La0.875Ba0.125FeO3 (0 1 0) surface was studied with the first-principles calculation based on the density functional theory. The results show that the surface states are near the Fermi energy level and that the Fe ion plays an important role in the process of oxygen adsorption, which affects the gas-sensing properties.  相似文献   

18.
The ternary MoO3-La2O3-B2O3 glasses containing a large amount of MoO3 (10-50 mol%) are prepared, and their structure and crystallization behavior are examined from the Raman scattering spectrum measurements and X-ray diffraction analyses. It is found that the glass transition and crystallization temperatures and the thermal stability against crystallization decrease with increasing MoO3 content. It is suggested that the main coordination state of Mo6+ ions in the glasses is isolated (MoO4)2− tetrahedral units giving strong Raman bands at 830-860 and 930 cm−1. It is found that the crystalline phases in the crystallized glasses are mainly LaMoBO6 and LaB3O6, and the main crystallization mechanism in MoO3-La2O3-B2O3 glasses is surface crystallization. LaMoBO6 crystals are found to give strong Raman bands at 810-830 and ∼910 cm−1.  相似文献   

19.
Highly ordered titanium oxide (TiO2) nanotubes were prepared by electrolytic anodization of titanium electrodes. Morphological evolution and phase transformations of TiO2 nanotubes on a Ti substrate and that of freestanding TiO2 membranes during the calcinations process were studied by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction microscopy. The detailed results and mechanisms on the morphology and crystalline structure were presented. Our results show that a compact layer exists between the tubular layer and Ti substrate at 600 °C, and the length of the nanotubes shortens dramatically at 750 °C. The freestanding membranes have many particles on their tubes during calcinations from 450 to 900 °C. The TiO2 nanotubes on the Ti substrate transform to rutile crystals at 600 °C, while the freestanding TiO2 membranes retain an anatase crystal with increasing temperature to 800 °C. The photocatalytic activity of TiO2 nanotubes on a Ti substrate annealed at different temperatures was investigated by the degradation of methyl orange in aqueous solution under UV light irradiation. Due to the anatase crystals in the tubular layer and rutile crystals in the compact layer, TiO2 nanotubes annealed at 450 °C with pure anatase crystals have a better photocatalytic activity than those annealed at 600 °C or 750 °C.  相似文献   

20.
Spherical-shaped Li4Ti5O12 anode powders with a mean size of 1.5 μm were prepared by spray pyrolysis. The precursor powders obtained by spray pyrolysis had no peaks of crystal structure of Li4Ti5O12. The powders post-treated at temperatures of 800 and 900 °C had the single phase of spinel Li4Ti5O12. The powders post-treated at a temperature of 1000 °C had main peaks of the Li4Ti5O12 phase and small impurity peaks of Li2Ti3O7. The spherical shape of the precursor powders was maintained after post-treatment at temperatures below 800 °C. The Brunauer-Emmett-Teller (BET) surface areas of the Li4Ti5O12 anode powders post-treated at temperatures of 700, 800 and 900 °C were 4.9, 1.6 and 1.5 m2/g, respectively. The initial discharge capacities of Li4Ti5O12 powders were changed from 108 to 175 mAh/g when the post-treatment temperatures were changed from 700 to 1000 °C. The maximum initial discharge capacity of the Li4Ti5O12 powders was obtained at a post-treatment temperature of 800 °C, which had good cycle properties below current densities of 0.7 C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号