首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the screening steps of chiral separation strategies with polysaccharide‐based chiral stationary phases were applied on boron cluster compounds in normal‐phase liquid chromatography (NPLC) and polar organic solvents chromatography (POSC). Since the screening steps were initially developed to analyze organic compounds, their applicability for boron clusters was investigated. Overall, the screening steps in NPLC were applicable for the separation of zwitterions, while for anions mostly no elution was observed. A hypothesis for the latter behavior is precipitation of anions in the nonpolar mobile phases. Ten out of 11 compounds could be partially or baseline separated on the NPLC screening systems. In POSC, all zwitterions were separated on at least one of the screening systems, with an overall lower retention as in NPLC. Anions were detected but not separated in the majority of the experiments. Also their retention on the chiral stationary phases was very limited. This study showed that the chiral discrimination potential of chemically modified polysaccharides is meaningful for chiral separations of structurally chiral boron cluster species, but needs further systematic research, in which recognition mechanisms should be further explored. In addition, some unusual peaks also indicated that conditions with a high separation efficiency must first be searched for some of the tested systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
An efficient two‐step method has been developed for the separation of β‐cypermethrin stereoisomers by supercritical fluid chromatography with polysaccharide chiral stationary phases. With respect to retention, selectivity, and resolution of β‐cypermethrin, the effects of chiral stationary phases, cosolvents, mobile phases, and column temperature have been studied in detail. Through a two‐step separation, β‐cypermethrin was firstly separated by using a cellulose‐derived chiral stationary phase to obtain two stereoisomeric pairs, and further resolved on an amylose‐based chiral stationary phase to produce four enantiopure stereoisomers. The electronic circular dichroism patterns of the first‐ and the third‐eluted isomers in methanol solution showed the mirror image of each other in the wavelength range 200∼300 nm, indicating that they were a pair of enantiomers. Moreover, the second‐ and the fourth‐eluted isomers were also enantiomers. This proposed two‐step strategy showed low solvent consumption, fast separation speed, and high‐purity, which may provide an effective approach for preparative separation of compounds with multiple chiral centers and difficult‐to‐separate multicomponent samples.  相似文献   

3.
Recycling high‐speed counter‐current chromatography was successfully applied to the preparative separation of oxybutynin enantiomers. The two‐phase solvent system consisted of n‐hexane, methyl tert‐butyl ether, and 0.1 mol/L phosphate buffer solution (pH = 5.0) with the volume ratio of 6:4:10. Hydroxypropyl‐β‐cyclodextrin was employed as the chiral selector. The influence of factors on the chiral separation process, including the concentration of chiral selector, the equilibrium temperature, the pH value of the aqueous phase were investigated. Under optimum separation conditions, 15 mg of oxybutynin racemate was separated with the purities of both the enantiomers over 96.5% determined by high‐performance liquid chromatography. Recovery for the target compounds reached 80–82% yielding 6.00 mg of (R)‐oxybutynin and 6.15 mg of (S)‐oxybutynin. Technical details for recycling elution mode were discussed.  相似文献   

4.
The screening conditions of an existing chiral strategy in CEC were tested for their applicability on four chlorine-containing polysaccharide-based stationary phases. The selectors of these phases are cellulose tris(3-chloro-4-methylphenylcarbamate), amylose tris(5-chloro-2-methylphenylcarbamate), cellulose tris(4-chloro-3-methylphenylcarbamate) and cellulose tris(3,5-dichlorophenylcarbamate). The enantioselectivity of these phases was compared with those of the four phases without chlorine (Chiralpak? AD-RH, Chiralcel? OD-RH, Chiralpak? AS-RH and Chiralcel? OJ-RH) used in the earlier defined strategy. A test set of 48 structurally diverse drug compounds was analyzed using the screening conditions of the strategy. These results led to possibilities to upgrade the current screening strategy so that improved success rates are obtained. The chlorine-containing chiral stationary phases demonstrated an added value to the screening process since they showed enantioresolution for compounds not resolved by the chiral stationary phases not containing chlorine in their structure.  相似文献   

5.
A generic strategy for the chiral separation of non-acidic pharmaceuticals was updated to complete an approach defined earlier. The selected chiral stationary phases are all polysaccharide selectors, chlorinated, and non-chlorinated, namely Lux(?) Amylose 2, Chiralcel(?) OD-RH, Lux(?) Cellulose 4, and Chiralpak(?) AD-RH. In this study, the screening step of a strategy defined earlier was updated and the optimization steps were re-evaluated for the applied chiral stationary phases. These screening and optimization conditions were studied by analyzing 20 pharmaceuticals at different organic modifier contents, temperatures, or applied voltages. The proposed chiral separation strategy was then evaluated with a test set of 19 non-acidic drugs. Seventeen compounds (89.5%) of the latter set could be resolved of which eight (42%) were baseline separated. The strategy thus proved to be applicable on compounds different from those used for its development.  相似文献   

6.
The separation of enantiomers of a series of eighteen novel nitrogen mustard linked phosphoryl diamide derivatives was investigated on the prepared phenyl carbamate derivative β‐cyclodextrin bonded phase in normal‐phase HPLC. Some of the enantiomers could be separated in baseline. The chiral recognition mechanism was also suggested for the separation of chiral phosphorus organic compounds.  相似文献   

7.
A novel method for the screening of 151 drugs of abuse and toxic compounds in human whole blood has been developed and validated by online solid‐phase extraction with liquid chromatography coupled to time‐of‐flight mass spectrometry. Analytes were extracted and separated by using a fully automated online solid‐phase extraction liquid chromatography system with total chromatographic run time of 26 min. Time‐of‐flight mass spectrometry screening of 151 drugs of abuse and toxic compounds was performed in a full‐scan (m/z 50–800) mode using an MSE acquisition of molecular ions and fragment ions data at two collision energies (one was 6 eV and another one was in the range of 5–45 eV). The compounds were identified based on retention times and exact mass of molecular ions and fragment ions. The limit of detection ranged from 1 to 100 ng/mL and the recovery of the method ranged from 6.3 to 163.5%. This method is proved to be a valuable screening method allowing fast and specific identification of drugs in human whole blood.  相似文献   

8.
Cortex Phellodendri is a typical Chinese herb with a large number of alkaloids existing in all parts of it. The most common methods for screening and isolating alkaloids are mostly labor intensive and time consuming. In this study, a new assay based upon ultrafiltration liquid chromatography was developed for the rapid screening of ligands for α‐glucosidase and xanthine oxidase. The C. Phellodendri extract was found to contain two alkaloids with both α‐glucosidase‐ and xanthine oxidase binding activities and one lactone with α‐glucosidase‐binding activity. Subsequently, with the help of high‐speed countercurrent chromatography, the specific binding ligands including palmatine, berberine, and obaculactone with purities of 97.38, 96.12, and 96.08%, respectively, were successfully separated. An optimized low‐toxicity two‐phase solvent system composed of ethyl acetate/n‐butanol/ethanol/water (3.5:1.7:0.5:5, v/v/v/v) was used to isolate the three compounds mentioned above from C. Phellodendri. The targeted compounds were identified by liquid chromatography coupled with mass spectrometry and NMR spectroscopy. Therefore, ultrafiltration liquid chromatography combined with high‐speed countercurrent chromatography is not only a powerful tool for screening and isolating α‐glucosidase and xanthine oxidase inhibitors in complex samples but is also a useful platform for discovering bioactive compounds for the prevention and treatment of diabetes mellitus and gout.  相似文献   

9.
A residual silanol group‐protecting chiral stationary phase (CSP) based on optically active (3,3′‐diphenyl‐1,1′‐binaphthyl)‐20‐crown‐6 was successfully applied to the resolution of fluoroquinolone compounds including gemifloxacin mesylate. The chiral recognition ability of the residual silanol group‐protecting CSP was generally greater than that of the residual silanol group‐containing CSP. From these results, it was concluded that the simple protection of the residual silanol groups of the latter CSP with lipophilic n‐octyl groups can improve its chiral recognition ability for the resolution of racemic fluoroquinolone compounds. The chromatographic resolution behaviors were investigated as a function of the content and type of organic and acidic modifiers and the ammonium acetate concentration in aqueous mobile phase and the column temperature. Especially, the addition of ammonium acetate to the mobile phase was found to be a quite effective means of reducing the enantiomer retentions without sacrificing the chiral recognition efficiency of the CSP.  相似文献   

10.
《Electrophoresis》2018,39(2):348-355
A new single‐urea‐bound chiral stationary phase based on 3,5‐dimethylphenylcarbamoylated β‐cyclodextrin was prepared through the Staudinger reaction of mono (6A‐azido‐6A‐deoxy)‐per(3,5‐dimethylphenylcarbamoylated) β‐cyclodextrin and 3‐aminopropyl silica gel under CO2 atmosphere. The new phase exhibited good enantioseparation performance for 33 analytes using normal‐phase HPLC conditions; 19 of them were baseline separated. Effects of structure of analytes, alcoholic modifiers, and acidic/basic additives on separation performances of this new cyclodextrin chiral stationary phase have been studied in detail. The results showed that the retention and resolution of acidic and basic analytes on the CSP were greatly affected by the additives. Peak symmetry for some analytes could be improved by simultaneously adding acidic and basic additives to the mobile phase. This work expands the potential applications of the cyclodextrin‐based chiral stationary phases in the normal‐phase HPLC.  相似文献   

11.
The resolving power of a new commercial polysaccharide‐based chiral stationary phase, Sepapak‐4, with cellulose tris(4‐chloro‐3‐methylphenylcarbamate) coated on silica microparticles as chiral selector, was evaluated toward the enantioseparation of ten basic drugs with widely different structures and hydrophobic properties, using ACN as the main component of the mobile phase. A multivariate approach (experimental design) was used to screen the factors (temperature, n‐hexane content, acidic and basic additives) likely to influence enantioresolution. Then, the optimization was performed using a face‐centered central composite design. Complete enantioseparation could be obtained for almost all tested chiral compounds, demonstrating the high chiral discrimination ability of this chiral stationary phase using polar organic mobile phases made up of ACN and containing an acidic additive (TFA or formic acid), 0.1% diethylamine and n‐hexane. These results clearly illustrate the key role of the nature of the acidic additive in the mobile phase.  相似文献   

12.
A novel cellulose tris(N‐3,5‐dimethylphenylcarbamate) (CDMPC) chiral stationary phase (CSP) was prepared by coating CDMPC on TiO2/SiO2, which was prepared by coating titania nanoparticles on silica through a self‐assemble technique. At first, 2‐hydroxyl‐phenyl acetonitrile and α‐phenylethanol were separated on this new CSP to evaluate the chiral separation ability. Then, two pesticides, matalaxyl and diclofop‐methyl were separated. The influence of the mobile phase composition on the enantioselectivity was discussed, and the repeatability and stability of the CSP were studied too.  相似文献   

13.
In completion of an earlier defined generic chiral screening approach, a generic separation strategy for basic, bifunctional, and neutral compounds was proposed and evaluated. This strategy adds to a previously defined strategy for acidic compounds. The screening experiment of the actual strategy used a mobile phase of 5 mM phosphate buffer pH 11.5/ACN (30/70 v/v), a temperature of 25 degrees C, and a voltage of 15 kV. The selected chiral stationary phases were Chiralpak AD-RH, Chiralcel OD-RH, Chiralcel OJ-RH, and Chiralpak AS-RH, all based on polysaccharide selectors. It was seen that 31 out of 48 test compounds were partially or baseline-resolved under screening conditions. After execution of the optimization steps of the strategy, this number increased to 41, with a total of 21 baseline-separated compounds. Combined with the results obtained from the acidic test set examined in the earlier defined strategy, of all tested compounds 82.5% showed enantioselectivity and 49.2% could be baseline-separated.  相似文献   

14.
Retention and enantioseparation behavior of ten 2,2′‐disubstituted or 2,3,2′‐trisubstituted 1,1′‐binaphthyls and 8,3′‐disubstituted 1,2′‐binaphthyls, which are used as catalysts in asymmetric synthesis, was investigated on eight chiral stationary phases (CSPs) based on β‐CD, polysaccharides (tris(3,5‐dimethylphenylcarbamate) cellulose or amylose CSPs) and new synthetic polymers (trans‐1,2‐diamino‐cyclohexane, trans‐1,2‐diphenylethylenediamine and trans‐9,10‐dihydro‐9,10‐ethanoanthracene‐(11S,12S)‐11,12‐dicarboxylic acid CSPs). Normal‐, reversed‐phase and polar‐organic separation modes were employed. The effect of the mobile phase composition was examined. The enantiomeric separation of binaphthyl derivatives, which possess quite similar structures, was possible in different enantioselective environments. The substituents and their positions on the binaphthyl skeleton affect their properties and, as a consequence, the separation system suitable for their enantioseparation. In general, the presence of ionizable groups on the binaphthyl skeleton, substitution with non‐identical groups and a chiral axis in the 1,2′ position had the greatest impact on the enantiomeric discrimination. The 8,3′‐disubstituted 1,2′‐binaphthyl derivatives were the most easily separated compounds in several separation systems. From all the chiral stationary phases tested, cellulose‐based columns were shown to be the most convenient for enantioseparation of the studied analytes. However, the polymeric CSPs with their complementary behavior provided good enantioselective environments for some derivatives that could be hardly separated in any other chromatographic system.  相似文献   

15.
Polysaccharide‐based chiral stationary phases can be used for the enantioselective separation of a wide range of structurally different compounds. These phases are available with chiral selectors coated or immobilized on silica gel support. The means of attachment of the chiral selector to the carrier can influence the separation performance of these stationary phases. This paper deals with evaluation of differences in the separation abilities of coated Chiralpak AD‐RH versus immobilized Chiralpak IA amylose‐based stationary phases in the reversed–phase mode of high–performance liquid chromatography. A set of chiral analytes was separated under acidic and basic conditions. Differences were observed in the enantioseparation potential of the tested phases. The linear‐free energy relationship and additional evaluation of ionic interactions were used to ascertain whether the interactions that participate in retention and enantioseparation are affected by the means of preparation of these phases. All the interactions covered by the linear‐free energy relationship were significant for the studied phases and their absolute values were almost always higher for the coated phase. Ionic interactions were found to be more important on the immobilized stationary phase but did not contribute to any improvement in the enantioselective separation performance.  相似文献   

16.
Bromoacetate‐substituted [3‐(2‐O‐β‐cyclodextrin)‐2‐hydroxypropoxy]propylsilyl‐appended silica particles (BACD‐HPS), an important and useful synthetic intermediate for preparation of novel types of macrocycles‐capped β‐CD‐bonded silica particles including crown ether/cyclam/calix[4]arene‐capped β‐CD‐bonded silica particles, have been prepared and used as chiral stationary phase for HPLC. This synthetic stationary phase is characterized by means of elemental analysis. For the first time, the chromatographic behavior of BACD‐HPS was systematically evaluated with several disubstituted benzenes and some chiral drug compounds under both normal and RP conditions in HPLC. The results show that BACD‐HPS has excellent selectivity for the separation of aromatic positional isomers and chiral isomers of some drug compounds when used as stationary phase in HPLC.  相似文献   

17.
A fast screening strategy was developed in capillary electrochromatography (CEC) for the chiral separation of basic and bifunctional compounds. The screening conditions were determined on polysaccharide chiral stationary phases using 15 pharmaceutical compounds. The content and type of organic modifier, as well as the pH of the mobile phase appeared to have the largest influence on the chiral resolution. It was seen that for acidic compounds, our approach was not suitable. A generic mobile phase for basic and bifunctional compounds was determined. The testing on 20 additional compounds showed that the proposed mobile phase performed well since enantioselectivity was observed for 86% of the investigated compounds. A comparison of CEC and reversed-phase liquid chromatography (RPLC) results was attempted to demonstrate the potential of the used technique for chiral method development.  相似文献   

18.
Heptakis(2,6‐di‐O‐methyl‐3‐O‐pentyl)‐β‐cyclodextrin was monofunctionalized by the regioselective introduction of exactly one ω‐epoxyoctyl group at the primary site of the cyclodextrin. The site‐specifically substituted cyclodextrin was immobilized to commercially available aminopropyl silica by nucleophilic opening of the epoxy function of the spacer substituent resulting in a lipophilic chiral stationary phase with broad applicability for enantiomer separations in capillary‐HPLC under reversed‐phase conditions.  相似文献   

19.
Isolation of chiral molecules as pure enantiomers remains a fundamental challenge in chemical research. Enantioselective enrichment through preferential crystallization is an efficient method to achieve enantiopure compounds, but its applicability depends on the relative stability of the enantiopure and racemic crystal forms. Using a simple thermodynamic model and first‐principles density‐functional calculations, it is possible to predict the difference in solubility between the enantiopure and racemic solid phases. This approach uses dispersion‐corrected density functionals and is capable of accurately predicting the solution‐phase entantiomeric excess to within about 10 % of experimental measurements on average. The accuracy of the exchange‐hole dipole moment (XDM) model of dispersion enables the viability of the proposed method.  相似文献   

20.
The HPLC enantioseparation of nine atropisomeric 3,3′,5,5′‐tetrasubstituted‐4,4′‐bipyridines was performed in normal and polar organic (PO) phase modes using two immobilized polysaccharide‐based chiral columns, namely, Chiralpak IA and Chiralpak IC. The separation of all racemic analytes, the effect of the chiral selector, and mobile phase (MP) composition on enantioseparation and the enantiomer elution order (EEO) were studied. The beneficial effect of nonstandard solvents, such as tetrahydrofuran (THF), dichloromethane (DCM), and methyl t‐butyl ether on enantioseparation was investigated. All selected 4,4′‐bipyridines were successfully enantioseparated on Chiralpak IA under normal or PO MPs with separation factors from 1.14 to 1.70 and resolutions from 1.3 to 6.5. Two bipyridines were enantioseparated at the multimilligram level on Chiralpak IA. Differently, Chiralpak IC was less versatile toward the considered class of compounds and only five bipyridines out of nine could be efficiently separated. In particular, on these columns, the ternary mixture n‐heptane/THF/DCM (90:5:5) as MP had a positive effect on enantioseparation. An interesting phenomenon of reversal of the EEO depending on the composition of the MP for the 3,3′‐dibromo‐5,5′‐bis‐(E)‐phenylethenyl‐4,4′‐bipyridine along with an exceptional enantioseparation for the 3,3′‐dibromo‐5,5′‐bis‐ferrocenylethynyl‐4,4′‐bipyridine (α = 8.33, Rs = 30.6) were observed on Chiralpak IC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号