首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let n and k be integers, with and . An semi‐Latin square S is an array, whose entries are k‐subsets of an ‐set, the set of symbols of S, such that each symbol of S is in exactly one entry in each row and exactly one entry in each column of S. Semi‐Latin squares form an interesting class of combinatorial objects which are useful in the design of comparative experiments. We say that an semi‐Latin square S is uniform if there is a constant μ such that any two entries of S, not in the same row or column, intersect in exactly μ symbols (in which case ). We prove that a uniform semi‐Latin square is Schur‐optimal in the class of semi‐Latin squares, and so is optimal (for use as an experimental design) with respect to a very wide range of statistical optimality criteria. We give a simple construction to make an semi‐Latin square S from a transitive permutation group G of degree n and order , and show how certain properties of S can be determined from permutation group properties of G. If G is 2‐transitive then S is uniform, and this provides us with Schur‐optimal semi‐Latin squares for many values of n and k for which optimal semi‐Latin squares were previously unknown for any optimality criterion. The existence of a uniform semi‐Latin square for all integers is shown to be equivalent to the existence of mutually orthogonal Latin squares (MOLS) of order n. Although there are not even two MOLS of order 6, we construct uniform, and hence Schur‐optimal, semi‐Latin squares for all integers . & 2012 Wiley Periodicals, Inc. J. Combin. Designs 00: 1–13, 2012  相似文献   

2.
Suppose that and . We construct a Latin square of order n with the following properties:
  • has no proper subsquares of order 3 or more .
  • has exactly one intercalate (subsquare of order 2) .
  • When the intercalate is replaced by the other possible subsquare on the same symbols, the resulting Latin square is in the same species as .
Hence generalizes the square that Sade famously found to complete Norton's enumeration of Latin squares of order 7. In particular, is what is known as a self‐switching Latin square and possesses a near‐autoparatopism.  相似文献   

3.
Skew Hadamard difference sets have been an interesting topic of study for over 70 years. For a long time, it had been conjectured the classical Paley difference sets (the set of nonzero quadratic residues in where ) were the only example in Abelian groups. In 2006, the first author and Yuan disproved this conjecture by showing that the image set of is a new skew Hadamard difference set in with m odd, where denotes the first kind of Dickson polynomials of order n and . The key observation in the proof is that is a planar function from to for m odd. Since then a few families of new skew Hadamard difference sets have been discovered. In this paper, we prove that for all , the set is a skew Hadamard difference set in , where m is odd and . The proof is more complicated and different than that of Ding‐Yuan skew Hadamard difference sets since is not planar in . Furthermore, we show that such skew Hadamard difference sets are inequivalent to all existing ones for by comparing the triple intersection numbers.  相似文献   

4.
In an earlier paper the authors constructed a hamilton cycle embedding of in a nonorientable surface for all and then used these embeddings to determine the genus of some large families of graphs. In this two‐part series, we extend those results to orientable surfaces for all . In part I, we explore a connection between orthogonal latin squares and embeddings. A product construction is presented for building pairs of orthogonal latin squares such that one member of the pair has a certain hamiltonian property. These hamiltonian squares are then used to construct embeddings of the complete tripartite graph on an orientable surface such that the boundary of every face is a hamilton cycle. This construction works for all such that and for every prime p. Moreover, it is shown that the latin square construction utilized to get hamilton cycle embeddings of can also be used to obtain triangulations of . Part II of this series covers the case for every prime p and applies these embeddings to obtain some genus results.  相似文献   

5.
The problem of the existence of a decomposition of the complete graph into disjoint copies of has been solved for all admissible orders n, except for 27, 36, 54, 64, 72, 81, 90, 135, 144, 162, 216, and 234. In this paper, I eliminate 4 of these 12 unresolved orders. Let Γ be a ‐design. I show that divides 2k3 for some and that . I construct ‐designs by prescribing as an automorphism group, and show that up to isomorphism there are exactly 24 ‐designs with as an automorphism group. Moreover, I show that the full automorphism group of each of these designs is indeed . Finally, the existence of ‐designs of orders 135, 162, and 216 follows immediately by the recursive constructions given by G. Ge and A. C. H. Ling, SIAM J Discrete Math 21(4) (2007), 851–864.  相似文献   

6.
H. Cao  J. Fan  D. Xu 《组合设计杂志》2015,23(10):417-435
A ‐semiframe of type is a ‐GDD of type , , in which the collection of blocks can be written as a disjoint union where is partitioned into parallel classes of and is partitioned into holey parallel classes, each holey parallel class being a partition of for some . A ‐SF is a ‐semiframe of type in which there are p parallel classes in and d holey parallel classes with respect to . In this paper, we shall show that there exists a (3, 1)‐SF for any if and only if , , , and .  相似文献   

7.
A decomposition of a complete graph into disjoint copies of a complete bipartite graph is called a ‐design of order n. The existence problem of ‐designs has been completely solved for the graphs for , for , K2, 3 and K3, 3. In this paper, I prove that for all , if there exists a ‐design of order N, then there exists a ‐design of order n for all (mod ) and . Giving necessary direct constructions, I provide an almost complete solution for the existence problem for complete bipartite graphs with fewer than 18 edges, leaving five orders in total unsolved.  相似文献   

8.
A q‐ary code of length n, size M, and minimum distance d is called an code. An code with is said to be maximum distance separable (MDS). Here one‐error‐correcting () MDS codes are classified for small alphabets. In particular, it is shown that there are unique (5, 53, 3)5 and (5, 73, 3)7 codes and equivalence classes of (5, 83, 3)8 codes. The codes are equivalent to certain pairs of mutually orthogonal Latin cubes of order q, called Graeco‐Latin cubes.  相似文献   

9.
In this paper, by employing linear algebra methods we obtain the following main results:
  • (i) Let and be two disjoint subsets of such that Suppose that is a family of subsets of such that for every pair and for every i. Then Furthermore, we extend this theorem to k‐wise L‐intersecting and obtain the corresponding result on two cross L‐intersecting families. These results show that Snevily's conjectures proposed by Snevily (2003) are true under some restricted conditions. This result also gets an improvement of a theorem of Liu and Hwang (2013).
  • (ii) Let p be a prime and let and be two subsets of such that or and Suppose that is a family of subsets of [n] such that (1) for every pair (2) for every i. Then This result improves the existing upper bound substantially.
  相似文献   

10.
An is a triple , where X is a set of points, is a partition of X into m disjoint sets of size n and is a set of 4‐element transverses of , such that each 3‐element transverse of is contained in exactly one of them. If the full automorphism group of an admits an automorphism α consisting of n cycles of length m (resp. m cycles of length n), then this is called m‐cyclic (resp. semi‐cyclic). Further, if all block‐orbits of an m‐cyclic (resp. semi‐cyclic) are full, then it is called strictly cyclic. In this paper, we construct some infinite classes of strictly m‐cyclic and semi‐cyclic , and use them to give new infinite classes of perfect two‐dimensional optical orthogonal codes with maximum collision parameter and AM‐OPPTS/AM‐OPPW property.  相似文献   

11.
An idempotent Latin square of order v is called resolvable and denoted by RILS(v) if the off‐diagonal cells can be resolved into disjoint transversals. A large set of resolvable idempotent Latin squares of order v, briefly LRILS(v), is a collection of RILS(v)s pairwise agreeing on only the main diagonal. In this paper, it is established that there exists an LRILS(v) for any positive integer , except for , and except possibly for .  相似文献   

12.
Using the technique of amalgamation‐detachment, we show that the complete equipartite multigraph can be decomposed into cycles of lengths (plus a 1‐factor if the degree is odd) whenever there exists a decomposition of into cycles of lengths (plus a 1‐factor if the degree is odd). In addition, we give sufficient conditions for the existence of some other, related cycle decompositions of the complete equipartite multigraph .  相似文献   

13.
New families of complete caps in finite Galois spaces are obtained. For most pairs with and , they turn out to be the smallest known complete caps in . Our constructions rely on the bicovering properties of certain plane arcs contained in plane cubic curves with a cusp.  相似文献   

14.
For two graphs G and H their wreath product has vertex set in which two vertices and are adjacent whenever or and . Clearly, , where is an independent set on n vertices, is isomorphic to the complete m‐partite graph in which each partite set has exactly n vertices. A 2‐regular subgraph of the complete multipartite graph containing vertices of all but one partite set is called partial 2‐factor. For an integer λ, denotes a graph G with uniform edge multiplicity λ. Let J be a set of integers. If can be partitioned into edge‐disjoint partial 2‐factors consisting cycles of lengths from J, then we say that has a ‐cycle frame. In this paper, we show that for and , there exists a ‐cycle frame of if and only if and . In fact our results completely solve the existence of a ‐cycle frame of .  相似文献   

15.
Large sets of orthogonal arrays (LOA) have been used to construct resilient functions and zigzag functions by D. R. Stinson. In this paper, a special kind of LOA, strong double large sets of orthogonal arrays (SDLOA), is introduced and some constructions are provided. Meanwhile, a construction of multimagic squares based on SDLOAs is also given. As its application, it is proved that a t‐multimagic square of order exists whenever q is a prime power and , , which improves a similar result by H. Derksen et al. from primes to prime powers in Amer. Math. Monthly (2007).  相似文献   

16.
Yue Zhou 《组合设计杂志》2013,21(12):563-584
We show that every ‐relative difference set D in relative to can be represented by a polynomial , where is a permutation for each nonzero a. We call such an f a planar function on . The projective plane Π obtained from D in the way of M. J. Ganley and E. Spence (J Combin Theory Ser A, 19(2) (1975), 134–153) is coordinatized, and we obtain necessary and sufficient conditions of Π to be a presemifield plane. We also prove that a function f on with exactly two elements in its image set and is planar, if and only if, for any .  相似文献   

17.
A triple cyclically contains the ordered pairs , , , and no others. A Mendelsohn triple system of order v, or , is a set V together with a collection of ordered triples of distinct elements from V, such that and each ordered pair with is cyclically contained in exactly λ ordered triples. By means of a computer search, we classify all Mendelsohn triple systems of order 13 with ; there are 6 855 400 653 equivalence classes of such systems.  相似文献   

18.
If a cycle decomposition of a graph G admits two resolutions, and , such that for each resolution class and , then the resolutions and are said to be orthogonal. In this paper, we introduce the notion of an orthogonally resolvable cycle decomposition, which is a cycle decomposition admitting a pair of orthogonal resolutions. An orthogonally resolvable cycle decomposition of a graph G may be represented by a square array in which each cell is either empty or filled with a k–cycle from G, such that every vertex appears exactly once in each row and column of the array and every edge of G appears in exactly one cycle. We focus mainly on orthogonal k‐cycle decompositions of and (the complete graph with the edges of a 1‐factor removed), denoted . We give general constructions for such decompositions, which we use to construct several infinite families. We find necessary and sufficient conditions for the existence of an OCD(n, 4). In addition, we consider orthogonal cycle decompositions of the lexicographic product of a complete graph or cycle with . Finally, we give some nonexistence results.  相似文献   

19.
A kGDCD, group divisible covering design, of type is a triple , where V is a set of gu elements, is a partition of V into u sets of size g, called groups, and is a collection of k‐subsets of V, called blocks, such that every pair of elements in V is either contained in a unique group or there is at least one block containing it, but not both. This family of combinatorial objects is equivalent to a special case of the graph covering problem and a generalization of covering arrays, which we call CARLs. In this paper, we show that there exists an integer such that for any positive integers g and , there exists a 4‐GDCD of type which in the worst case exceeds the Schönheim lower bound by δ blocks, except maybe when (1) and , or (2) , , and or . To show this, we develop constructions of 4‐GDCDs, which depend on two types of ingredients: essential, which are used multiple times, and auxiliary, which are used only once in the construction. If the essential ingredients meet the lower bound, the products of the construction differ from the lower bound by as many blocks as the optimal size of the auxiliary ingredient differs from the lower bound.  相似文献   

20.
Kun Wang  Yang Li 《组合设计杂志》2013,21(10):464-477
A symmetric nested orthogonal array, denoted by NOA, is an OA which contains an OA as a subarray, where . Nested orthogonal arrays are useful in designing an experimental setup consisting of two experiments, the expensive one of higher accuracy being nested in a relatively less expensive one of lower accuracy. In this paper, some combinatorial constructions of nested orthogonal arrays are provided. By employing these constructions, the existence spectrum of NOA is completely determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号