首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this article, a new weak Galerkin mixed finite element method is introduced and analyzed for the Helmholtz equation with large wave numbers. The stability and well‐posedness of the method are established for any wave number k without mesh size constraint. Allowing the use of discontinuous approximating functions makes weak Galerkin mixed method highly flexible in term of little restrictions on approximations and meshes. In the weak Galerkin mixed finite element formulation, approximation functions can be piecewise polynomials with different degrees on different elements and meshes can consist elements with different shapes. Suboptimal order error estimates in both discrete H1 and L2 norms are established for the weak Galerkin mixed finite element solutions. Numerical examples are tested to support the theory.  相似文献   

2.
A newly developed weak Galerkin method is proposed to solve parabolic equations. This method allows the usage of totally discontinuous functions in approximation space and preserves the energy conservation law. Both continuous and discontinuous time weak Galerkin finite element schemes are developed and analyzed. Optimal‐order error estimates in both H1 and L2 norms are established. Numerical tests are performed and reported. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

3.
In this article, we propose a combined hybrid discontinuous mixed finite element method for miscible displacement problem with local discontinuous Galerkin method. Here, to obtain more accurate approximation and deal with the discontinuous case, we use the hybrid mixed element method to approximate the pressure and velocity, and use the local discontinuous Galerkin finite element method for the concentration. Compared with other combined methods, this method can improve the efficiency of computation, deal with the discontinuous problem well and keep local mass balance. We study the convergence of this method and give the corresponding optimal error estimates in L(L2) for velocity and concentration and the super convergence in L(H1) for pressure. Finally, we also present some numerical examples to confirm our theoretical analysis.  相似文献   

4.
This article is concerned with the analysis of the discontinuous Galerkin finite element method (DGFEM) applied to the space semidiscretization of a nonstationary convection–diffusion problem with nonlinear convection and nonlinear diffusion. Optimal estimates in the L (L 2)-norm are derived for the symmetric interior penalty (SIPG) scheme in two dimensions. The error analysis is carried out for nonconforming triangular meshes under the assumption that the exact solution of the problem and the solution of a linearized elliptic dual problem are sufficiently regular.  相似文献   

5.
Numerical simulation of industrial processes involving viscoelastic liquids is often based on finite element methods on quadrilateral meshes. However, numerical analysis of these methods has so far been limited to triangular meshes. In this work, we consider quadrilateral meshes. We first study the approximation of the transport equation by a Galerkin discontinuous method and prove an 𝒪(hk+1/2) error estimates for the Qk finite element. Then we study a differential model for viscoelastic flow with unknowns u the velocity, p the pressure, and σ the viscoelastic part of the extra-stress tensor. The approximations are ((Q1)2 transforms of) Qk+1 continuous for u, Qk discontinuous for σ, and Pk discontinuous for p, with k ≥ 1. Upwinding for σ is obtained by the Galerkin discontinuous method. We show that an error estimate of order 𝒪(hk+1/2) is valid in the energy norm for the three unknowns. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 97–114, 1998  相似文献   

6.
In this paper, the weak Galerkin finite element method (WG-FEM) is applied to a pulsed electric model arising in biological tissue when a biological cell is exposed to an electric field. A fitted WG-FEM is proposed to approximate the voltage of the pulsed electric model across the physical media involving an electric interface (surface membrane), and heterogeneous permittivity and a heterogeneous conductivity. This method uses totally discontinuous functions in approximation space and allows the usage of finite element partitions consisting of general polygonal meshes. Optimal pointwise-in-time error estimates in L2-norm and H1-norm are shown to hold for the semidiscrete scheme even if the regularity of the solution is low on the whole domain. Furthermore, a fully discrete approximation based on backward Euler scheme is analyzed and related optimal error estimates are derived.  相似文献   

7.
We analyze a combined method consisting of the mixed finite element method for pressure equation and the discontinuous Galerkin method for saturation equation for the coupled system of incompressible two‐phase flow in porous media. The existence and uniqueness of numerical solutions are established under proper conditions by using a constructive approach. Optimal error estimates in L2(H1) for saturation and in L(H(div)) for velocity are derived. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Discontinuous Stable Elements for the Incompressible Flow   总被引:4,自引:0,他引:4  
In this paper, we derive a discontinuous Galerkin finite element formulation for the Stokes equations and a group of stable elements associated with the formulation. We prove that these elements satisfy the new inf–sup condition and can be used to solve incompressible flow problems. Associated with these stable elements, optimal error estimates for the approximation of both velocity and pressure in L 2 norm are obtained for the Stokes problems, as well as an optimal error estimate for the approximation of velocity in a mesh dependent norm.  相似文献   

9.
The paper presents the theory of the discontinuous Galerkin finite element method for the space–time discretization of a nonstationary convection–diffusion initial-boundary value problem with nonlinear convection and linear diffusion. The problem is not singularly perturbed with dominating convection. The discontinuous Galerkin method is applied separately in space and time using, in general, different space grids on different time levels and different polynomial degrees p and q in space and time dicretization. In the space discretization the nonsymmetric, symmetric and incomplete interior and boundary penalty (NIPG, SIPG, IIPG) approximation of diffusion terms is used. The paper is concerned with the proof of error estimates in “L 2(L 2)”- and “DG”-norm formed by the “L 2(H 1)”-seminorm and penalty terms. A special technique based on the use of the Gauss–Radau interpolation and numerical integration has been used for the derivation of an abstract error estimate. In the “DG”-norm the error estimates are optimal with respect to the size of the space grid. They are optimal with respect to the time step, if the Dirichlet boundary condition has behaviour in time as a polynomial of degree ≤ q.  相似文献   

10.
We prove existence and numerical stability of numerical solutions of three fully discrete interior penalty discontinuous Galerkin methods for solving nonlinear parabolic equations. Under some appropriate regularity conditions, we give the l2(H1) and l(L2) error estimates of the fully discrete symmetric interior penalty discontinuous Galerkin–scheme with the implicit θ ‐schemes in time, which include backward Euler and Crank–Nicolson finite difference approximations. Our estimates are optimal with respect to the mesh size h. The theoretical results are confirmed by some numerical experiments. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

11.
The goal of this work is to derive and justify a multilevel preconditioner of optimal arithmetic complexity for symmetric interior penalty discontinuous Galerkin finite element approximations of second order elliptic problems. Our approach is based on the following simple idea given in [R.D. Lazarov, P.S. Vassilevski, L.T. Zikatanov, Multilevel preconditioning of second order elliptic discontinuous Galerkin problems, Preprint, 2005]. The finite element space of piece-wise polynomials, discontinuous on the partition , is projected onto the space of piece-wise constant functions on the same partition that constitutes the largest space in the multilevel method. The discontinuous Galerkin finite element system on this space is associated to the so-called “graph-Laplacian”. In 2-D this is a sparse M-matrix with -1 as off diagonal entries and nonnegative row sums. Under the assumption that the finest partition is a result of multilevel refinement of a given coarse mesh, we develop the concept of hierarchical splitting of the unknowns. Then using local analysis we derive estimates for the constants in the strengthened Cauchy–Bunyakowski–Schwarz (CBS) inequality, which are uniform with respect to the levels. This measure of the angle between the spaces of the splitting was used by Axelsson and Vassilevski in [Algebraic multilevel preconditioning methods II, SIAM J. Numer. Anal. 27 (1990) 1569–1590] to construct an algebraic multilevel iteration (AMLI) for finite element systems. The main contribution in this paper is a construction of a splitting that produces new estimates for the CBS constant for graph-Laplacian. As a result we have a preconditioner for the system of the discontinuous Galerkin finite element method of optimal arithmetic complexity.  相似文献   

12.
An efficient time‐stepping procedure is investigated for a two‐dimensional compressible miscible displacement problem in porous media in which the mixed finite element method with Raviart‐Thomas space is applied to the flow equation, and the transport one is solved by the symmetric interior penalty discontinuous Galerkin approximation on Cartesian meshes. Based on the projection interpolations and the induction hypotheses, a superconvergence error estimate is obtained. During the analysis, an extension of the Darcy velocity along the Gauss line is also used in the evaluation of the coefficients in the Galerkin procedure for the concentration. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

13.
The paper presents the theory of the discontinuous Galerkin finite element method for the space-time discretization of a linear nonstationary convection-diffusion-reaction initial-boundary value problem. The discontinuous Galerkin method is applied separately in space and time using, in general, different nonconforming space grids on different time levels and different polynomial degrees p and q in space and time discretization, respectively. In the space discretization the nonsymmetric interior and boundary penalty approximation of diffusion terms is used. The paper is concerned with the proof of error estimates in “L 2(L 2)”-and “ ”-norms, where ɛ ⩾ 0 is the diffusion coefficient. Using special interpolation theorems for the space as well as time discretization, we find that under some assumptions on the shape regularity of the meshes and a certain regularity of the exact solution, the errors are of order O(h p + τ q ). The estimates hold true even in the hyperbolic case when ɛ = 0.  相似文献   

14.
We develop the error analysis for the h‐version of the discontinuous Galerkin finite element discretization for variational inequalities of first and second kinds. We establish an a priori error estimate for the method which is of optimal order in a mesh dependant as well as L2‐norm.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

15.
This paper is devoted to a newly developed weak Galerkin finite element method with the stabilization term for a linear fourth order parabolic equation, where weakly defined Laplacian operator over discontinuous functions is introduced. Priori estimates are developed and analyzed in L2 and an H2 type norm for both semi‐discrete and fully discrete schemes. And finally, numerical examples are provided to confirm the theoretical results.  相似文献   

16.
In this work we present a new coupled space-time discontinuous Galerkin method for the dynamical analysis of fully-saturated porous media. The method consists of a finite element discretization in space and time simultaneously. The numerical solution is solved on every time-slab (Qn = Ω × ℐn), which is in analogy to classical finite difference methods in time. The method is stable and efficient. The computational accuracy can be easily raised by increasing the order of the ansatz functions. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
This article concerns shape regularity conditions on arbitrarily shaped polygonal/polyhedral meshes. In (J. Wang and X. Ye, A weak Galerkin mixed finite element method for second‐order elliptic problems, Math Comp 83 (2014), 2101–2126), a set of shape regularity conditions has been proposed, which allows one to prove important inequalities such as the trace inequality, the inverse inequality, and the approximation property of the L2 projection on general polygonal/polyhedral meshes. In this article, we propose a simplified set of conditions which provides similar mesh properties. Our set of conditions has two advantages. First, it allows the existence of “small” edges/faces, as long as the shape of the polygon/polyhedron is regular. Second, coupled with an extra condition, we are now able to deal with nonquasiuniform meshes. As an example, we show that the discontinuous Galerkin method for Laplacian equations on arbitrarily shaped polygonal/polyhedral meshes, satisfying the proposed set of shape regularity conditions, achieves optimal rate of convergence. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 308–325, 2015  相似文献   

18.
It is well known that convergence rate of finite element approximation is suboptimal in the L2 norm for solving biharmonic equations when P2 or Q2 element is used. The goal of this paper is to derive a weak Galerkin (WG) P2 element with the L2 optimal convergence rate by assuming the exact solution sufficiently smooth. In addition, our new WG finite element method can be applied to general mesh such as hybrid mesh, polygonal mesh or mesh with hanging node. The numerical experiments have been conducted on different meshes including hybrid meshes with mixed of pentagon and rectangle and mixed of hexagon and triangle.  相似文献   

19.
A finite element method is proposed and analyzed for hyperbolic problems with discontinuous coefficients. The main emphasize is given on the convergence of such method. Due to low global regularity of the solutions, the error analysis of the standard finite element method is difficult to adopt for such problems. For a practical finite element discretization, optimal error estimates in L(L2) and L(H1) norms are established for continuous time discretization. Further, a fully discrete scheme based on a symmetric difference approximation is considered, and optimal order convergence in L(H1) norm is established. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

20.
A space–time discontinuous Galerkin (DG) finite element method is presented for the shallow water equations over varying bottom topography. The method results in nonlinear equations per element, which are solved locally by establishing the element communication with a numerical HLLC flux. To deal with spurious oscillations around discontinuities, we employ a dissipation operator only around discontinuities using Krivodonova's discontinuity detector. The numerical scheme is verified by comparing numerical and exact solutions, and validated against a laboratory experiment involving flow through a contraction. We conclude that the method is second order accurate in both space and time for linear polynomials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号