首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a new combinatorial optimization problem that combines network design and facility location aspects. Given a graph with two types of customers and two technologies that can be installed on the edges, the objective is to find a minimum cost subtree connecting all customers while the primary customers are served by a primary subtree that is embedded into the secondary subtree. In addition, besides fixed link installation costs, facility opening costs, associated to each node where primary and secondary subtree connect, have to be paid. The problem is called the Two Level Network Design Problem with Transition Facilities (TLNDF).  相似文献   

2.
We study the capacitated m-ring-star problem (CmRSP) that faces the design of minimum cost network structure that connects customers with m rings using a set of ring connections that share a distinguished node (depot), and optionally star connections that connect customers to ring nodes. Ring and star connections have some associated costs. Also, rings can include transit nodes, named Steiner nodes, to reduce the total network cost if possible. The number of customers in each ring-star (ringʼs customers and customer connected to it through star connections) have an upper bound (capacity).These kind of networks are appropriate in optical fiber urban environments. CmRSP is know to be NP-Hard. In this paper we propose an integer linear programming formulation and a branch-and-cut algorithm.  相似文献   

3.
We consider a queueing model wherein the resource is shared by two different classes of customers, primary (existing) and secondary (new), under a service level based pricing contract. This contract between secondary class customers and resource manager specifies unit admission price and quality of service (QoS) offered. We assume that the secondary customers’ Poisson arrival rate depends linearly on unit price and service level offered while the server uses a delay dependent priority queue management scheme. We analyze the joint problem of optimal pricing and operation of the resource with the inclusion of secondary class customers, while continuing to offer a pre-specified QoS to primary class customers. Our analysis leads to an algorithm that finds, in closed form expressions, the optimal points of the resulting non-convex constrained optimization problem. We also study in detail the structure and the non-linear nature of these optimal pricing and operating decisions.  相似文献   

4.
In this paper, we consider a variant of the open vehicle routing problem in which vehicles depart from the depot, visit a set of customers, and end their routes at special nodes called driver nodes. A driver node can be the home of the driver or a parking lot where the vehicle will stay overnight. The resulting problem is referred to as the open vehicle routing problem with driver nodes (OVRP-d). We consider three classes of OVRP-d: with no time constraints, with a maximum route duration, and with both a maximum route duration as well as time deadlines for visiting customers. For the solution of these problems, which are not addressed previously in the literature, we develop a new tabu search heuristic. Computational results on randomly generated instances indicate that the new heuristic exhibits a good performance both in terms of the solution quality and computation time.  相似文献   

5.
《Optimization》2012,61(8):1039-1073
This article deals with multicriteria optimization models and algorithms of movement scheduling for many objects to synchronize their movement (2CMSS problem). The model consists of two parts: (1) node–disjoint path planning visiting specified nodes for K objects with a given vector of intermediate nodes for each one (NDSP problem); (2) movement synchronization in some intermediate nodes (MS problem). For synchronous movement, two categories of criteria are defined: time of movement and ‘distance’ of K-moved objects from the movement pattern. We defined the problem as a discrete-continuous, non-linear, two-criteria mathematical programming problem. We proposed to use a two-stage algorithm to solve the 2CMSS problem (as lexicographic solution): At first we have to find the vector of node–disjoint shortest paths for K objects visiting intermediate nodes to set optimal paths under the assumption that we use maximal possible velocities on each arc belonging to a path for each object (solution of the NDSP problem), and next we try to decrease the values of velocities to optimize the second criterion (synchronization, solution of the MS problem). Experimental analyses of effectiveness and complexity of the algorithms are presented.  相似文献   

6.
We consider a generalization of the uncapacitated facility location problem, where the setup cost for a facility and the price charged for service may depend on the number of customers patronizing the facility. Customers are represented by the nodes of the transportation network, and facilities can be located only at nodes; a customer selects a facility to patronize so as to minimize his (her) expenses (price for service + the part of transportation costs paid by the customer). We assume that transportation costs are paid partially by the service company and partially by customers. The objective is to choose locations for facilities and balanced prices so as to either minimize the expenses of the service company (the sum of the total setup cost and the total part of transportation costs paid by the company), or to maximize the total profit. A polynomial-time dynamic programming algorithm for the problem on a tree network is developed.  相似文献   

7.
Abstract

In this paper, the simple dynamic facility location problem is extended to uncertain realizations of the potential locations for facilities and the existence of customers as well as fixed and variable costs. With limited knowledge about the future, a finite and discrete set of scenarios is considered. The decisions to be made are where and when to locate the facilities, and how to assign the existing customers over the whole planning horizon and under each scenario, in order to minimize the expected total costs. Whilst assignment decisions can be scenario dependent, location decisions have to take into account all possible scenarios and cannot be changed according to each scenario in particular. We first propose a mixed linear programming formulation for this problem and then we present a primal-dual heuristic approach to solve it. The heuristic was tested over a set of randomly generated test problems. The computational results are provided.  相似文献   

8.
The distribution of relief aid is a complex problem where the operations have to be managed efficiently due to limited resources. We present a routing problem for relief operations whose primary goal is to satisfy demand for relief supplies at many locations taking into account the urgency of each demand. We have a single vehicle of unlimited capacity. Each node (location) has a demand and a priority. The priority indicates the urgency of the demand. Typically, nodes with the highest priorities need to be visited before lower priority nodes. We describe a new and interesting model for humanitarian relief routing that we call the hierarchical traveling salesman problem (HTSP). We compare the HTSP and the classical TSP in terms of worst-case behavior. We obtain a simple, but elegant result that exhibits the fundamental tradeoff between efficiency (distance) and priority and we provide several related observations and theorems.  相似文献   

9.
A two-stage distribution planning problem, in which customers are to be served with different commodities from a number of plants, through a number of intermediate warehouses is addressed. The possible locations for the warehouses are given. For each location, there is an associated fixed cost for opening the warehouse concerned, as well as an operating cost and a maximum capacity. The demand of each customer for each commodity is known, as are the shipping costs from a plant to a possible warehouse and thereafter to a customer. It is required to choose the locations for opening warehouses and to find the shipping schedule such that the total cost is minimized. The problem is modelled as a mixed-integer programming problem and solved by branch and bound. The lower bounds are calculated through solving a minimum-cost, multicommodity network flow problem with capacity constraints. Results of extensive computational experiments are given.  相似文献   

10.
The dial-a-ride problem involves the dispatching of a fleet of vehicles in order to transport a set of customers from specific pick-up nodes to specific drop-off nodes. Using a modified version of hyperlink-induced topic search (HITS), we characterize hubs as nodes with many out-links to other hubs and calculate a hub score for each pick-up and drop-off node. Ranking the nodes by hub score gives guidance to a backtracking algorithm for efficiently finding feasible solutions to the dial-a-ride problem.  相似文献   

11.
In Distribution System Design, one minimizes total costs related to the number, locations and sizes of warehouses, and the assignment of warehouses to customers. The resulting system, while optimal in a strategic sense, may not be the best choice if operational aspects such as vehicle routing are also considered.We formulate a multicommodity, capacitated distribution planning model as anon-linear, mixed integer program. Distribution from factories to customers is two-staged via depots (warehouses) whose number and location must be chosen. Vehicle routes from depots to customers are established by considering the “fleet size and mix” problem, which also incorporates strategic decisions on fleet makeup and vehicle numbers of each type. This problem is solved as a generalized assignment problem, within an algorithm for the overall distribution/routing problem that is based on Benders decomposition. We furnish two version of our algorithm denoted Technique I and II. The latter is an enhaancement of the former and is employed at the user's discretion. Computer solution of test problems is discussed.  相似文献   

12.
Given a set of m resources and n tasks, the dynamic capacity acquisition and assignment problem seeks a minimum cost schedule of capacity acquisitions for the resources and the assignment of resources to tasks, over a given planning horizon of T periods. This problem arises, for example, in the integrated planning of locations and capacities of distribution centers (DCs), and the assignment of customers to the DCs, in supply chain applications. We consider the dynamic capacity acquisition and assignment problem in an environment where the assignment costs and the processing requirements for the tasks are uncertain. Using a scenario based approach, we develop a stochastic integer programming model for this problem. The highly non-convex nature of this model prevents the application of standard stochastic programming decomposition algorithms. We use a recently developed decomposition based branch-and-bound strategy for the problem. Encouraging preliminary computational results are provided.  相似文献   

13.
In this paper, we study allocation strategies and their effects on total routing costs in hub networks. Given a set of nodes with pairwise traffic demands, the p-hub median problem is the problem of choosing p nodes as hub locations and routing traffic through these hubs at minimum cost. This problem has two versions; in single allocation problems, each node can send and receive traffic through a single hub, whereas in multiple allocation problems, there is no such restriction and a node may send and receive its traffic through all p hubs. This results in high fixed costs and complicated networks. In this study, we introduce the r-allocation p-hub median problem, where each node can be connected to at most r hubs. This new problem generalizes the two versions of the p-hub median problem. We derive mixed-integer programming formulations for this problem and perform a computational study using well-known datasets. For these datasets, we conclude that single allocation solutions are considerably more expensive than multiple allocation solutions, but significant savings can be achieved by allowing nodes to be allocated to two or three hubs rather than one. We also present models for variations of this problem with service quality considerations, flow thresholds, and non-stop service.  相似文献   

14.
We consider an integrated production and distribution scheduling problem in a make-to-order business scenario. A product with a short lifespan (e.g., perishable or seasonal) is produced at a single production facility with a limited production rate. This means that the product expires in a constant time after its production is finished. Orders are received from a set of geographically dispersed customers, where a demand for the product and a time window for the delivery is associated with each customer for the planning period. A single vehicle with non-negligible traveling times between the locations is responsible for the deliveries. Due to the limited production and distribution resources, possibly not all customers may be supplied within their time windows or the lifespan. The problem consists in finding a selection of customers to be supplied such that the total satisfied demand is maximized. We extend the work by Armstrong et al. (Annals of Operations Research 159(1):395–414, 2008) on the problem for fixed delivery sequences by pointing out an error in their branch and bound algorithm and presenting a corrected variant. Furthermore, we introduce model extensions for handling delays of the production start as well as for variable production and distribution sequences. Efficient heuristic solution algorithms and computational results for randomly generated instances are presented.  相似文献   

15.
In this paper, we introduce the Multiple Server location problem. A given number of servers are to be located at nodes of a network. Demand for these servers is generated at each node, and a subset of nodes need to be selected for locating one or more servers in each. There is no limit on the number of servers that can be established at each node. Each customer at a node selects the closest server (with demand divided equally when the closest distance is measured to more than one node). The objective is to minimize the sum of the travel time and the average time spent at the server, for all customers. The problem is formulated and analysed. Results using heuristic solution procedures: descent, simulated annealing, tabu search and a genetic algorithm are reported. The problem turns out to be a very difficult combinatorial problem when the total demand is very close to the total capacity of the servers.  相似文献   

16.
In this paper, we suggest a methodology to solve a cooperative transportation planning problem and to assess its performance. The problem is motivated by a real-world scenario found in the German food industry. Several manufacturers with same customers but complementary food products share their vehicle fleets to deliver their customers. After an appropriate decomposition of the entire problem into sub problems, we obtain a set of rich vehicle routing problems (VRPs) with time windows for the delivery of the orders, capacity constraints, maximum operating times for the vehicles, and outsourcing options. Each of the resulting sub problems is solved by a greedy heuristic that takes the distance of the locations of customers and the time window constraints into account. The greedy heuristic is improved by an appropriate Ant Colony System (ACS). The suggested heuristics to solve the problem are assessed within a dynamic and stochastic environment in a rolling horizon setting using discrete event simulation. We describe the used simulation infrastructure. The results of extensive simulation experiments based on randomly generated problem instances and scenarios are provided and discussed. We show that the cooperative setting outperforms the non-cooperative one.  相似文献   

17.
In this paper we consider the problem of adding the smallest number of additional (relay) nodes to a network of static nodes with limited communication range so that the induced communication graph is 2-connected (we consider both edge and vertex connectivity). The problem is NP-hard. We develop algorithms that find close to optimal solutions for both edge and vertex connectivity. We prove the algorithms have an approximation ratio of 2M for nodes distributed in a d-dimensional Euclidean space, where M is the maximum node degree of a Minimum Spanning Tree in d dimensions using Euclidean metrics. In addition, our methods extend with the same approximation guarantees to a generalization when the locations of relays are required to avoid certain polygonal regions (obstacles).  相似文献   

18.
A new mathematical model is considered related to competitive location problems where two competing parties, the Leader and the Follower, successively open their facilities and try to win customers. In the model, we consider a situation of several alternative demand scenarios which differ by the composition of customers and their preferences.We assume that the costs of opening a facility depend on its capacity; therefore, the Leader, making decisions on the placement of facilities, must determine their capacities taking into account all possible demand scenarios and the response of the Follower. For the bilevel model suggested, a problem of finding an optimistic optimal solution is formulated. We show that this problem can be represented as a problem of maximizing a pseudo- Boolean function with the number of variables equal to the number of possible locations of the Leader’s facilities.We propose a novel systemof estimating the subsets that allows us to supplement the estimating problems, used to calculate the upper bounds for the constructed pseudo-Boolean function, with additional constraints which improve the upper bounds.  相似文献   

19.
Antunes  Nelson  Pacheco  António  Rocha  Rui 《Queueing Systems》2002,40(3):247-281
We propose a queueing network model which can be used for the integration of the mobility and teletraffic aspects that are characteristic of wireless networks. In the general case, the model is an open network of infinite server queues where customers arrive according to a non-homogeneous Poisson process. The movement of a customer in the network is described by a Markov renewal process. Moreover, customers have attributes, such as a teletraffic state, that are driven by continuous time Markov chains and, therefore, change as they move through the network. We investigate the transient and limit number of customers in disjoint sets of nodes and attributes. These turn out to be independent Poisson random variables. We also calculate the covariances of the number of customers in two sets of nodes and attributes at different time epochs. Moreover, we conclude that the arrival process per attribute to a node is the sum of independent Poisson cluster processes and derive its univariate probability generating function. In addition, the arrival process to an outside node of the network is a non-homogeneous Poisson process. We illustrate the applications of the queueing network model and the results derived in a particular wireless network.  相似文献   

20.
We consider a two-stage defender-attacker game that takes place on a network, in which the attacker seeks to take control over (or “influence”) as many nodes as possible. The defender acts first in this game by protecting a subset of nodes that cannot be influenced by the attacker. With full knowledge of the defender’s action, the attacker can then influence an initial subset of unprotected nodes. The influence then spreads over a finite number of time stages, where an uninfluenced node becomes influenced at time t if a threshold number of its neighbors are influenced at time t?1. The attacker’s objective is to maximize the weighted number of nodes that are influenced over the time horizon, where the weights depend both on the node and on the time at which that is influenced. This defender-attacker game is especially difficult to optimize, because the attacker’s problem itself is NP-hard, which precludes a standard inner-dualization approach that is common in many interdiction studies. We provide three models for solving the attacker’s problem, and develop a tailored cutting-plane algorithm for solving the defender’s problem. We then demonstrate the computational efficacy of our proposed algorithms on a set of randomly generated instances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号