首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we propose a Two scale Cellular Automaton for Flow DYnamics Modeling (2CAFDYM) in a lowland region. Cells are terrain meshes with a predefined size, arranged in a bi-dimensional hexagonal lattice. The state of the cell consists of two scales: groundwater and surface water, in order to combine flows over saturated soil (Dunne flow) and flows exceeding the infiltration capacity (Hortonian flow). This allows for survey flood events and water resources. Each cell has intrinsic terrain attributes: altitude, soil type and land use. The obtained slopes are considered towards all the neighboring cells such that water flows simultaneously in multiple directions during the same time step. This helps us characterize laminar and turbulent flows. The model is subjected to climatic constraints: rainfall and temperature. The flow dynamics are regulated by mass conservation laws on hydraulic balance sheets (received, evaporated, infiltrated and drained water). Using Java Object Oriented Programming we have designed decision-aided software for the real-time monitoring of flow processes in 2D or 3D scenes through 2CAFDYM. We give some simulations for a basin in northern Morocco covering 34.3 km2, including some areas that are potentially vulnerable to flooding. Digital terrain models, geological maps and satellite images are used to extract input data.  相似文献   

2.
An approximate lumped parameter model for the surface runoff phenomenon on a catchment is presented. It consists of two submodels which are spatial discretizations of the basic partial differential equations of overland flow and infiltration. The aim of the model is to describe the dynamical input-output relationship between the rainfall rate and the surface runoff from the catchment. The boundary conditions of the infiltration process are modelled in an approximate way so that the number of state variables in the model can be reduced. With the aid of a single model parameter it is possible to describe simple catchment shapes like linearly converging and diverging surfaces. The model structure is flexible so that it can also be applied to more complex catchment configurations. The simulation results show that the phenomenon under consideration can be properly described by the model structure presented.  相似文献   

3.
This paper investigates dynamic responses of a viscous fluid flow introduced under a time dependent pressure gradient in a rigid cylindrical tube that is lined with a deformable porous surface layer. With the Darcy’s law and a linear elasticity assumption, we have solved the coupling effect of the fluid movement and the deformation of the porous medium in the Laplace transform space. Governing equations are deduced for the solid displacement and the fluid velocity in the porous layer. Analytical solutions in the transformed domain are derived and the time dependent variables are inverted numerically using Durbin’s algorithm. Interaction between the solid and the fluid phases in the porous layer and its effects on fluid flow in tube are investigated under steady and unsteady flow conditions when the solid phase is either rigid or deformable. Examples are presented for flows driven by a Heaviside or a sinusoid pressure gradient. Significant effects of the porous surface layer on the flow in the tube are observed. The analytical solutions can be used to test more complicated numerical schemes.  相似文献   

4.
There has been a surge of work on models for coupling surface‐water with groundwater flows which is at its core the Stokes–Darcy problem, as well as methods for uncoupling the problem into subdomain, subphysics solves. The resulting (Stokes–Darcy) fluid velocity is important because the flow transports contaminants. The numerical analysis and algorithm development for the evolutionary transport problem has, however, focused on a quasi‐static Stokes–Darcy model and a single domain (fully coupled) formulation of the transport equation. This report presents a numerical analysis of a partitioned method for contaminant transport for the fully evolutionary system. The algorithm studied is unconditionally stable with one subdomain solve per step. Numerical experiments are given using the proposed algorithm that investigates the effects of the penalty parameters on the convergence of the approximations.  相似文献   

5.
Studies of tidal stream turbine performance and of wake development are often conducted in tow-tanks or in regulated flumes with uniform flows across the turbine. Whilst such studies can be very useful, it is questionable as to what extent the results would differ if the flows were more complex in nature, for instance if the flows were unsteady or non-uniform or even both. This study aims to explore whether the results would be affected once we move away from the uniform flow scenario. A numerical modelling study is presented in which tidal stream turbine performance and wake development in non-uniform flow conditions are assessed. The model implements the Blade Element Momentum method for characterising turbine rotor source terms which are used within a computational fluid dynamics model for predicting the interaction between the turbines and the surrounding flow. The model is applied to a rectangular domain and a range of slopes are implemented for the water surface to instigate an increase in flow velocity along the domain. Within an accelerated flow domain wake recovery occurred more rapidly although rotor performance was not affected.  相似文献   

6.
《Applied Mathematics Letters》2005,18(10):1156-1162
The flow of a curve or surface is said to be inextensible if, in the former case, the arclength is preserved, and in the latter case, if the intrinsic curvature is preserved. Physically, inextensible curve and surface flows are characterized by the absence of any strain energy induced from the motion. In this paper we investigate inextensible flows of curves and developable surfaces in R3. Necessary and sufficient conditions for an inextensible curve flow are first expressed as a partial differential equation involving the curvature and torsion. We then derive the corresponding equations for the inextensible flow of a developable surface, and show that it suffices to describe its evolution in terms of two inextensible curve flows.  相似文献   

7.
Multi-component multi-phase (MCMP) flows are very common in engineering or industrial problems, as well as in nature. Because the lattice Boltzmann equation (LBE) model is based on microscopic models and mesoscopic kinetic equations, it offers many advantages for the study of multi-component or multi-phase flow problems. While the original formulation of Shan and Chen’s (SC) model can incorporate some MCMP flow scenarios, the density ratio of the different components is greatly restricted to less than approximately 2.0. This obviously limits the applications of this MCMP LBE model. Hence, based on the original SC MCMP model and the improvements in the single-component multi-phase (SCMP) flow model reported by Yuan and Schaefer, we have developed a new model that can simulate a MCMP system with a high density ratio.  相似文献   

8.
This article presents an extension of smoothed particle hydrodynamics (SPH) to non-isothermal free surface flows during the injection molding process. Specifically, we use the method presented by Xu and Yu, Appl. Math. Model. 48 (2017) pp. 384–409, in which the corrected kernel gradient is implemented to increase the computational accuracy and the Rusanov flux is introduced into the continuity equation to alleviate large and random pressure oscillations. To model non-isothermal free surface flows, a working SPH discretization of the temperature equation is derived. An enhanced treatment of the wall boundary is further developed, which can model arbitrary-shaped mold walls. The proposed SPH method is first validated by solving non-isothermal Couette flow and non-isothermal injection molding of a circular disc with a core and comparing the SPH results with those obtained by other numerical methods or experiments. We then extend the numerical method to non-isothermal injection molding of F-shaped and N-shaped cavities. The convergence of the method is examined with several different particle sizes. The effects of the operating conditions (e.g., injection temperature, temperature of the mold wall, and injection velocity) on the flow behavior are analyzed. All the results illustrate that the present SPH method is a powerful computational tool for simulations of non-isothermal free surface flows during the injection molding process.  相似文献   

9.
Alexandru Dumitrache 《PAMM》2004,4(1):560-561
An interaction viscous‐inviscid method for efficiently computing steady and unsteady viscous flows is presented. The inviscid domain is modeled using a finite element discretization of the full potential equation. The viscous region is modeled using a finite difference boundary layer technique. The two regions are simultaneously coupled using the transpiration approach. A time linearization technique is applied to this interactive method. For unsteady flows, the fluid is assumed to be composed of a mean or steady flow plus a harmonically varying small unsteady disturbance. Numerically exact nonreflecting boundary conditions are used for the far field conditions. Results for some steady and unsteady, laminar and turbulent flow problems are compared to linearized Navier‐Stokes or time‐marching boundary layer methods. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The resistance induced by vegetation on the flow in a watercourse should be considered in projects of watercourse management and river restoration. Depth-averaged numerical model is an efficient tool to study this problem. In this study, a depth-averaged model using the finite volume method on a staggered curvilinear grid and the SIMPLEC algorithm for numerical solution is developed for simulating the hydrodynamics of free surface flows in watercourses with vegetation. For the model formulation the vegetation resistance is treated as a momentum sink and represented by a Manning type equation, and turbulence is parameterized by the kε equations. An analytical equation is derived to represent the resistance induced by submerged vegetation by an equivalent Manning roughness coefficient. Numerical simulation is carried out for the flow in an open channel with a 180° bend, and the flow in a curved open channel partly covered by emerged vegetation, as well as the flow in a straight trapezoidal channel with submerged vegetation. The agreement between the computed results and the measured data is generally good, showing that the resistance due to emerged or submerged vegetation can be represented accurately by the Manning roughness equation. The computed results demonstrate that the depth-averaged modeling is a reasonable and efficient tool to study flows in watercourses with vegetations.  相似文献   

11.
A numerical model for free surface flows of non-newtonian liquids which are injected into a cavity is presented. These flows are regarded as a basic model of injection molding. Model experiments of the injection process are performed with a water-based gel. The flow equations are integrated according to the finite-volume-method. The volume of fluid method (VoF) is employed in order to describe the free surface flow of two incompressible phases, the phase interface is resolved by the method of geometric reconstruction. The Herschel-Bulkley model is used in order to describe shear-thinning behavior of the molding material and the effects of a yielding point. Different patterns of the filling flow depending on the injection parameters are evident in the experiment and the simulation. They are characterized and arranged with respect to the similarity parameters of the flow. Again, the results of the simulation are found to agree well with the experimental observations. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
A sensitive issue in numerical calculations for exterior flow problems, e.g.around airfoils, is the treatment of the far field boundary conditions on a computational domain which is bounded. In this paper we investigate this problem for two-dimensional transonic potential flows with subsonic far field flow around airfoil profiles. We take the artificial far field boundary in the subsonic flow region. In the far field we approximate the subsonic potential flow by the Prandtl-Glauert linearization. The latter leads via the Green representation theorem to a boundary integral equation on the far field boundary. This defines a nonlocal boundary condition for the interior ring domain. Our approach leads naturally to a coupled finite element/boundary element method for numerical calculations. It is compared with local boundary conditions. The error analysis for the method is given and we prove convergence provided the solution to the analytic transonic flow problem around the profile exists.

  相似文献   


13.
In this paper, modelling gas–liquid bubbly flows is achieved by the introduction of a population balance equation combined with the three-dimensional two-fluid model. For gas–liquid bubbly flows without heat and mass transfer, an average bubble number density transport equation has been incorporated in the commercial code CFX5.7 to better describe the temporal and spatial evolution of the geometrical structure of the gas bubbles. The coalescence and breakage effects of the gas bubbles are modelled according to the coalescence by the random collisions driven by turbulence and wake entrainment while for bubble breakage by the impact of turbulent eddies. Local radial distributions of the void fraction, interfacial area concentration, bubble Sauter mean diameter, and gas and liquid velocities, are compared against experimental data in a vertical pipe flow. Satisfactory agreements for the local distributions are achieved between the predictions and measurements. For gas–liquid bubbly flows with heat and mass transfer, boiling flows at subcooled conditions are considered. Based on the formulation of the MUSIG (multiple-size-group) boiling model and a model considering the forces acting on departing bubbles at the heated surface implemented in the computer code CFX4.4, comparison of model predictions against local measurements is made for the void fraction, bubble Sauter mean diameter, interfacial area concentration, and gas and liquid velocities covering a range of different mass and heat fluxes and inlet subcooling temperatures. Good agreement is achieved with the local radial void fraction, bubble Sauter mean diameter, interfacial area concentration and liquid velocity profiles against measurements. However, significant weakness of the model is evidenced in the prediction of the vapour velocity. Work is in progress through the consideration of additional momentum equations or developing an algebraic slip model to account for the effects of bubble separation.  相似文献   

14.
A 3-D coupled thermal-fluid model describing mass, momentum and energy transport within a Ti–6Al–4V rolling ingot cast in an (Electron Beam Cold Hearth Remelting) EBCHR process has been developed to describe steady state casting conditions. The model incorporates a number of the physical phenomena inherent to the industrial process, including a metal inlet in the center of one of the narrow faces, complex boundary conditions based on industrial practice, buoyancy driven flow within the liquid and flow attenuation using a Darcy momentum source term within the mushy zone. The model ignores turbulence in the liquid pool and Marangoni (surface tension) driven surface flows. The model has been validated against liquid pool depth and profile measurements made on an experimental casting seeded with insoluble dense markers and doped with dense alloy additions. Comparisons have also been made to video images taken of the top surface during casting. The results indicate that the model is able to quantitatively predict the steady state sump depth and profile and is able to qualitatively predict aspects of the top surface temperature distribution. The model has also been used to conduct a process heat balance and sensitivity analyses. The process heat balance conducted on the model domain indicates that at steady state the liquid metal inlet contributes 88% of the total power input, while the electron beam provides net 12% after accounting for radiation losses from the top surface; 62% of the heat is lost through the ingots sides and the balance is lost via bulk transport of sensible heat through the bottom of the domain. The results of the sensitivity analysis on pool depth indicate that casting rate has the largest effect followed by metal inlet superheat. The thermal, flow and pressure fields predicted by the steady state model serves as the initial conditions for a transient hot-top model, which is the subject of a forth-coming paper.  相似文献   

15.
Saturated-unsaturated flow under a complex terrain is usually solved using the Richards equation. Finite difference or finite volume methods are commonly employed for discretization of Richards equation because of simplicity of coding. Complex subsurface boundary geometries lead to nonorthogonal grids in curvilinear grid systems, which leads to difficulty in discretization and mesh generation. This paper develops a vertical coordinate transform, enabling a computational domain regular in the vertical direction. As a result, the grid of curvilinear surfaces can be successfully transformed to a computational grid that allows solution of the Richards equation with efficient computation and simpler coding. The anisotropic Richards equation in the Cartesian coordinate system is transformed to the equation in the arbitrary coordinate system and further expressed as a form appropriate to the orthogonal coordinate system. The generalized third boundary condition is transformed to a form suited to the orthogonal coordinate system. The finite volume method is used to solve the Richards equation in the orthogonal coordinate system. Four cases are used to validate the present orthogonal coordinate system. The computational results from the orthogonal coordinate system are in good agreement with the results from Ansys Fluent solved in a Cartesian coordinate system for the subsurface flow case. For the coupled case of hill slopes, a good agreement between the computational results and the experimental data is obtained. The present results for V-titled catchment and slab case accord well with the results obtained from HydroGeoSphere and PAWS. The present algorithm can improve grid generation for solution of Richards equation in a hydrological model for a complex domain.  相似文献   

16.
This work presents a boundary integral equation formulation for Stokes nonlinear slip flows based on the normal and tangential projection of the Green's integral representational formulae for the velocity field. By imposing the surface tangential velocity discontinuity (slip velocity) in terms of the nonlinear slip flow boundary condition, a system of nonlinear boundary integral equations for the unknown normal and tangential components of the surface traction is obtained. The Boundary Element Method is used to solve the resulting system of integral equations using a direct Picard iteration scheme to deal with the resulting nonlinear terms. The formulation is used to study flows between curved rotating geometries: i.e., concentric and eccentric Couette flows and single rotor mixers, under nonlinear slip boundary conditions. The numerical results obtained for the concentric Couette flow is validated again a semianalytical solution of the problem, showing excellent agreements. The other two cases, eccentric Couette and single rotor mixers, are considered to study the effect of different nonlinear slip conditions in these flow configurations. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

17.
In this study, the non-Darcian flow and solute transport in porous media are modeled with a revised Caputo derivative called the Caputo–Fabrizio fractional derivative. The fractional Swartzendruber model is proposed for the non-Darcian flow in porous media. Furthermore, the normal diffusion equation is converted into a fractional diffusion equation in order to describe the diffusive transport in porous media. The proposed Caputo–Fabrizio fractional derivative models are addressed analytically by applying the Laplace transform method. Sensitivity analyses were performed for the proposed models according to the fractional derivative order. The fractional Swartzendruber model was validated based on experimental data for water flows in soil–rock mixtures. In addition , the fractional diffusion model was illustrated by fitting experimental data obtained for fluid flows and chloride transport in porous media. Both of the proposed fractional derivative models were highly consistent with the experimental results.  相似文献   

18.
This paper deals with the modelling of the rain water infiltration through the soil above the aquifer in case of runoff of the excess water. The main feature of the model lies on the correct definition of the boundary condition on the ground surface. The latter allows to estimate, after saturation, the real amount of the water that penetrates the soil and the one which runs off. The quantity playing a key role is the so-called rain pressure, defined as the pressure exerted by the rain on the soil. Although its importance is basically theoretical and it can be neglected for practical purposes, it helps understanding the real evolution of the physical problem, providing a theoretical justification of the empirical procedures.  相似文献   

19.
A nonlinear coupled mathematical system of two‐phase seepage flow displacement is discussed in this paper including an elliptic equation for the pressure and a convection‐dominated diffusion equation for the saturation. In fact, the boundary of an underground region where the fluid flows through is nonstationary. So a moving boundary should be considered. The saturation equation is convection‐dominated, therefore the method of upwind finite difference is introduced for the accurate computation. The upwind approximation could eliminate numerical oscillation and strong stability is shown. Since the computational work of saturation is larger than the pressure, the authors apply a parallel method, decomposing the whole domain into several nonoverlapping subdomains, to simplify the computation. A domain decomposition method coupled with upwind differences is presented for the saturation. The pressure equation is discretized by a five‐point center finite difference method. By using a transformation and defining new inner products and norms, error estimates in l2 norm is discussed. Finally, two experimental tests are given to illustrate the efficiency and accuracy of the parallel algorithm.  相似文献   

20.
The seepage under a Zhukovskii sheet pile through a layer of soil underlain by a highly permeable pressurized horizon is considered. The left semi-infinite part of the roof of this horizon is simulated by an impermeable foundation. The flow when the velocity on the edges of the sheet pile is equal to infinity and, on the two water permeable parts of the boundary of the domain of motion, the flow rate takes extremal values, is investigated. The limiting cases, associated with the absence of both a backwater and an impermeable inclusion, are mentioned. The problem of seepage from a foundation pit formed by two Zhukovskii sheet piles is solved within the limits of a flow with a highly permeable pressurized stratum lying below. In the case when there is no infiltration onto the free surface, a solution of the well-known Vedernikov problem is obtained. A contact scheme, arising when there are no such indicated critical points, is considered; it is described outside the scope of the constraints imposed on the unknown conforming mapping parameters ensuring the realization of the basic mathematical model. Solutions are given for two schemes of motion in a semi-inverse formulation. The classical Zhukovskii problem is the limiting case of one of them. The special features of such models are mentioned. The Polubarinova-Kochina method is used to study all the above-mentioned flows. This method enables exact analytical representations of the elements of the motion to be obtained. The results of numerical calculations and an analysis of the effect of all the physical factors on the seepage characteristics are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号