首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, porous poly(lactide‐co‐glycolide) (PLGA) microparticles with low mass density and large particle size were developed for chronic obstructive pulmonary disease treatment using anticholinergic drug (tiotropium). The porous PLGA microparticles were prepared by the water‐in‐oil‐in‐water (W1/O/W2) multi‐emulsion method using PLGA polymer and ammonium bicarbonate (as a porogen). Herein, soluble starch was incorporated in porous PLGA microparticles for long‐term tiotropium release. In vitro drug release studies determined that the rapid release of tiotropium from porous PLGA microparticles was reduced because of the high viscosity of the incorporated starch. Tiotropium release from porous PLGA microparticles continued up to 3 days. Furthermore, the inhaled microparticles showed longer drug residence in in vivo lung epithelium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In situ forming implants (ISFIs) appear to be a convenient drug delivery system, alternative to conventional preformed implants and microparticles for parenteral drug delivery applications. It has been shown that they offer several advantages including easy and minimally invasive application, potential for local/site‐specific drug delivery that allows reduction of side effects associated with systemic administration of drug. A few ISFI formulations based on poly(α‐hydroxy acids), solidifying by solid phase separation, are currently commercially available. In this work, polyesters based on sebacic acid, isosorbide, and optionally 1,2‐propanediol were synthesized and characterized. Poly(isosorbide sebacate‐co‐1,2‐propylene sebacate) (PISEBPG) was chosen as an essential constituent of new ISFI formulations dedicated to controlled release of doxycycline hyclate (DOXY). Basic characteristics of new ISFI formulations were investigated. In particular, the influence of addition of a relatively hydrophobic cosolvent (triacetin, TA) to a more hydrophilic 1‐methyl‐2‐pyrrolidone (NMP) as well as the presence of calcium carbonate (CAC) on the morphology of resulted depots and DOXY release profile was evaluated. Scanning electron microscopy (SEM) analysis revealed that the presence of TA resulted in more porous morphology of the depots. DOXY has been releasing continuously from depots in vitro within 12 weeks depending on the composition. The release profile of the PISEBPG‐based formulation containing CAC indicates that it could be useful where short‐term (up to 14 d), rapid release of the antibiotic is required, while formulation without CAC, where after 21 days about 50% of the drug loaded may still be available for release, may be better for the long‐term delivery of DOXY.  相似文献   

3.
Regenerated cellulose membranes have been traditionally manufactured using the viscose or the copper‐ammonia process. Today, membranes made by this process are still used in many fields such as dialysis. However, there are some serious environmental problems inherent in the existing processing routes. The new N‐methylmorpholine‐N‐oxide (NMMO) process can overcome these disadvantages and provides membranes with improved mechanical properties. In the present work, cellulose membranes were successfully prepared from NMMO solution under various conditions. It was found that the cellulose concentration is a decisive factor in controlling the membrane permeation properties. For a given coagulation system, higher cellulose concentration leads to membranes with greater rejection of bovine serum albumin (BSA) and lower pure water flux. It was also found that both the degree of polymerization (DP) and the type of cellulose pulp have great effect on the morphology and permeation properties of the membrane support layer. With increasing NMMO concentration and temperature of the coagulation bath, the pure water flux increases while the rejection of BSA decreases; a result of the larger mean pore size formed during coagulation.  相似文献   

4.
Summary: 5‐Fluorouracil‐poly(L ‐lactide) (5‐Fu‐PLLA) microparticles have been prepared by an SEDS process. First, the 5‐Fu is successfully micronized and is then used to produce the 5‐Fu‐PLLA microparticles. The 5‐Fu‐PLLA microparticles synthesized by the SEDS process exhibit a rather spherical shape and a narrow particle size distribution, where it ranges from 615 to 1 990 nm, with a mean particle size of 980 nm. The dichloromethane residue in the 5‐Fu‐PLLA microparticles without any further treatment is 46 ppm. The average drug load and encapsulation efficiency of the 5‐Fu‐PLLA microparticles are 3.05 and 17.8%, respectively. The rate of drug release from the 5‐Fu‐PLLA microparticles shows mainly first‐order kinetics.

Scanning electron spectroscopy image of 5‐Fu‐PLLA microparticles.  相似文献   


5.
《先进技术聚合物》2018,29(5):1372-1376
Much progress has been made toward stimuli‐responsive polysaccharide‐based selective tumor therapy not only because polysaccharides have nontoxic biodegradability and biocompatibility but also because their stimuli‐sensitive characteristics enable the proper transport of payloads into tumors. Here, we attempted to deliver an antitumor drug, doxorubicin (DOX), using starch‐based microparticles coupled with pH‐responsive 3‐(diethylamino)propylamine. The microparticles of starch conjugated with 3‐(diethylamino)propylamine (SDEAP) allowed for the change in hydrophobicity of SDEAPs in a pH‐dependent manner. The results revealed that SDEAPs effectively carried and released DOX and selectively killed tumor cells under acidic condition. Overall, this study suggests that DOX‐loaded SDEAPs can be further explored as a strategy for applications to acidic tumor‐targeting implants owing to the drug‐deliver efficiency and tumor selectivity.  相似文献   

6.
Simultaneous drug release and monitoring using a single polymeric platform represents a significant advance in the utilization of biomaterials for therapeutic use. Tracking drug release by real‐time electrochemical detection using the same platform is a simple way to guide the dosage of the drug, improve the desired therapeutic effect, and reduce the adverse side effects. The platform developed in this work takes advantage of the flexibility and loading capacity of hydrogels, the mechanical strength of microfibers, and the capacity of conducting polymers to detect the redox properties of drugs. The engineered platform is prepared by assembling two spin‐coated layers of poly‐γ‐glutamic acid hydrogel, loaded with poly(3,4‐ethylenedioxythiophene) (PEDOT) microparticles, and separated by a electrospun layer of poly‐ε‐caprolactone microfibers. Loaded PEDOT microparticles are used as reaction nuclei for the polymerization of poly(hydroxymethyl‐3,4‐ethylenedioxythiophene) (PHMeDOT), that semi‐interpenetrate the whole three layered system while forming a dense network of electrical conduction paths. After demonstrating its properties, the platform is loaded with levofloxacin and its release monitored externally by UV–vis spectroscopy and in situ by using the PHMeDOT network. In situ real‐time electrochemical monitoring of the drug release from the engineered platform holds great promise for the development of multi‐functional devices for advanced biomedical applications.  相似文献   

7.
Many coating materials have been studied to prevent surgical site infections (SSIs). However, antibacterial coating on surfaces show weak adhesion using the traditional titanium (Ti) cage, resulting in low efficacy for preventing SSIs after spinal surgery. Herein, a 3D‐printed Ti cage combined with a drug‐releasing system is developed for in situ drug release and bacteria killing, leading to prevention of SSIs in vitro and in vivo. First, a 3D‐printed Ti cage is designed and prepared by the Electron Beam Melting (EBM) method. Second, polyvinyl alcohol (PVA) containing hydrophilic vancomycin hydrochloride (VH) is scattered across the surface of 3D‐printed porous Ti (Ti‐VH@PVA) cages. Ti‐VH@PVA cages show an efficient drug‐releasing profile and excellent bactericidal effect for three common bacteria after more than seven days in vitro. In addition, Ti‐VH@PVA cages exhibit reliable inhibition of inflammation associated with Staphylococcus aureus and effective bone regeneration capacity in a rabbit model of SSIs. The results indicate that Ti‐VH@PVA cages have potential advantages for preventing SSIs after spinal surgery.  相似文献   

8.
An experimental investigation of quasireversible maximum (QRM) of azobenzene on mercury electrode by two methods, i.e., traditional square‐wave voltammetry (SWV) and fast Fourier transformed square‐wave voltammetry (FT‐SWV), was presented, and the influence factors on QRM of FT‐SWV were discussed. The results show that the rate constants derived from FT‐SWV agree with that of derived from traditional SWV with acceptable differences, showing a sound verification that the rate constants derived from FT‐SWV were reliable. In addition, some theoretical predictions on FT‐SWV were experimentally confirmed through the characterization of strongly adsorbed azobenzene on mercury film electrode. As a result, FT‐SWV is further proved to be a powerful technique in kinetic studies of the surface adsorbed processes.  相似文献   

9.
The present paper describes the synthesis of 2,6‐di‐O‐thexyldimethylsilyl cellulose as a novel 2,6‐di‐O‐protected cellulose derivative. This material was obtained by reacting cellulose in N,N‐dimethylacetamide/LiCl solution with thexyldimethylchlorosilane and imidazole for 24 h at 100°C. In a typical subsequent reaction the residual OH‐group in position 3 could be completely etherified without loss of any protecting groups. Treatment with tetrabutylammonium fluoride leads to the novel compounds 3‐O‐allyl and 3‐O‐methyl cellulose. The structures of all polymers are revealed by means of one‐ (1H and 13C) and two‐dimensional (COSY and HMQC) NMR techniques.  相似文献   

10.
We report here on plasticized ion‐selective poly(vinyl chloride) membranes with increased biocompatibility by means of a copper(I)‐catalyzed azide‐alkyne cycloaddition (‘click chemistry’) on the surface of finished membranes. We aimed for increasing the hydrophilicity of the surface and the application of NO releasing molecules. Employing the first principle, sodium selective membranes based on azide‐substituted PVC were modified with different length poly(ethylene glycol) (PEG) chains. For the second, cysteine groups were used as a nitrous oxide releasing substance. Surface modification was confirmed by Electrochemical Impedance Spectroscopy (EIS). Potentiometric measurements in undiluted whole blood showed an increased sensor stability in comparison to unmodified PVC. Membrane surfaces after 18 h contact with blood were analyzed with Scanning Electron Microscopy (SEM) and revealed a reduced level of blood cell adsorption on membranes modified with tetraethylene glycol (TEG) and PEGs. In contrast, cysteine modified membranes did not exhibit improved fouling resistance, suggesting that nitric oxide release by itself is not a sufficiently efficient mechanism.  相似文献   

11.
《Electroanalysis》2004,16(15):1227-1231
Recently reported studies on the transfer of silver ions across the aqueous|1,2‐dichloroethane interface using cyclic voltammetry (CV), facilitated by organic phase electrolyte anions, have been augmented by square‐wave voltammetry (SWV) and square‐wave stripping voltammetry (SWSV) studies and by consideration of the possible transfers of additional metal cations. Using SWV and SWSV, detection limits have been improved, from the 0.02 mM obtained by CV, to 1.4 μM (SWV) and 2 nM (SWSV). Additional studies show that mercury(I and II) ions, platinum(II) ions and gold(III) ions are also transferable across this interface, to differing extents. Of these three ions studied, highest sensitivity is achieved for the gold species.  相似文献   

12.
Living Micrococcus luteus (M. luteus) and Escherichia coli (E. coli) are encapsulated in poly(vinyl alcohol), poly(vinylpyrrolidone), hydroxypropyl cellulose, and gelatin by high‐temperature spray drying. The challenge is the survival of the bacteria during the standard spray‐drying process at temperatures of 150 °C (M. luteus) and 120 °C (E. coli). Raman imaging and transmission electron microscopy indicate encapsulated bacteria in hollow composite microparticles. The versatility of the spray‐dried polymer bacteria microparticles is successfully proved by standard polymer solution–processing techniques such as electrospinning, even with harmful solvents, to water‐insoluble polyacrylonitrile, polystyrene, poly(methyl methacrylate), and poly(vinyl butyrate) nanofiber nonwovens, which opens numerous new opportunities for novel applications.  相似文献   

13.
Electrochemical oxidation of (?)‐epigallocatechin gallate (EGCG), the main monomer flavanol found in green tea, has been investigated over a wide pH range at a glassy‐carbon electrode using square‐wave voltammetry (SWV). Square‐wave voltammograms of (?)‐epigallocatechin (EGC) and gallic acid have been studied as well. The I–E profile of EGCG, i.e. the oxidation potentials and the current responses of the first and the second peak, is pH dependent. The oxidation of EGCG is a quasireversible process over the studied pH range, which was also confirmed by the non‐linear relationship between the peak currents and squre root of frequency. The best SWV responses for EGCG were obtained at pH 2.0, frequency of 100 Hz, step of 2 mV and amplitude of 50 mV. Under these conditions, linear responses for EGCG were obtained for concentrations from 1×10?7 M to 1×10?6 M, and calculated LOD and LOQ for the first oxidation peak were 6.59×10?8 M and 2.19×10?7 M, respectively. The proposed electroanalytical procedure was applied for the determination of EGCG content in green tea. Developed SWV methodology represents a potential analytical tool in determination of catechins in tea samples.  相似文献   

14.
A novel functionalized cellulose derivative, 6‐O‐[4‐(9H‐carbazol‐9‐yl)butyl]‐2,3‐di‐O‐methyl cellulose, has been synthesized and characterized. The photoluminescence spectrum of the as‐cast film of the cellulose derivative exhibits sharp peaks with a well‐defined vibronic structure, which indicates that the interaction between carbazole groups is rather weak. This is in contrast to the broad spectrum of a poly(N‐vinylcarbazole) thin film. A thin‐film device, where the cellulose derivative is sandwiched by two different metals, shows a drastic transition between low‐ and high‐conductivity states upon the forward and backward sweeping of an external electric field. This reversible current density transition behavior demonstrates a typical memory characteristic, with the ON/OFF (high‐ and low‐conductivity) states exhibiting a current ratio of about four orders of magnitude. The cellulose derivative with a functional group such as a carbazole moiety will be a candidate for organic electronic materials.

  相似文献   


15.
A charge transfer (CT) mediated two‐component, multistimuli responsive supergelation involving a L ‐histidine‐appended pyrenyl derivative (PyHisOMe) as a donor and an asymmetric bolaamphiphilic naphthalene‐diimide (Asym‐NDI) derivative as an acceptor in a 2:1 mixture of H2O/MeOH was investigated. Asym‐NDI alone self‐assembled into pH‐responsive vesicular nanostructures in water. Excellent selectivity in CT gel formation was achieved in terms of choosing amino acid appended pyrenyl donor scaffolds. Circular dichroism and morphological studies suggested formation of chiral, interconnected vesicular assemblies resembling “pearls‐on‐a‐string” from these CT mixed stacks. XRD studies revealed the formation of monolayer lipid membranes from these CT mixed stacks that eventually led to the formation of individual vesicles. Strong cohesive forces among the interconnected vesicles originate from the protrusion of the oxyethylene chains from the surfaces of the chiral vesicles.  相似文献   

16.
An ultrasensitive label‐free electrochemical aptasensor was developed for selective detection of chloramphenicol (CAP). The aptasensor was made using screen‐printed gold electrode modified with synthesized gold nanocube/cysteine. The interactions of CAP with aptamer were studied by cyclic voltammetry, square wave voltammetry (SWV) and electrochemical impedance spectroscopy. Under optimized conditions, two linear calibration curves were obtained for CAP determination using SWV technique, from 0.03 to 0.10 µM and 0.25–6.0 µM with a detection limit of 4.0 nM. The aptasensor has the advantages of good selectivity and stability and applied to the determination of CAP in human blood serum sample.  相似文献   

17.
Infection is one of the major risk factors for the development of chronic wounds. Antimicrobial wound dressing has been pointed out as a viable option for the prevention and treatment of wound infections. Thus, we developed a composite material based on cotton textile substrates functionalized with cyclodextrin‐hydroxypropyl methyl cellulose‐based hydrogel. The composites' ability to encapsulate and release gallic acid (antimicrobial phenolic acid) was evaluated, as well as their mechanical properties and antimicrobial and anti‐inflammatory capacity. All composites were able to retain gallic acid in their structure, with similar loading profile. The presence of gallic acid on composites was confirmed by FTIR and TGA. Composites storage moduli was reduced by the presence of gallic acid. The results suggest a straight relation between the swelling ability and gallic acid drug delivery profile. The drug delivery mechanism, of the developed composites, was mainly controlled by Fickian diffusion, based on the experimental data fitting to the Peppas‐Sahlin model. Gallic acid antimicrobial and anti‐inflammatory properties were transferred to the composite materials. According to the results, the developed composites can be applied on the prevention or treatment of chronic wounds.  相似文献   

18.
We have demonstrated that small, modular, tetrameric peptides featuring the Lewis‐basic residue β‐dimethylaminoalanine (Dmaa) are capable of atroposelectively coupling naphthols and ester‐bearing quinones to yield non‐C2‐symmetric BINOL‐type scaffolds with good yields and enantioselectivity. The study culminates in the asymmetric synthesis of backbone‐substituted scaffolds similar to 3,3′‐disubstituted BINOLs, such as (R)‐TRIP, with good (94:6 e.r.) to excellent (>99.9:0.1 e.r.) enantioselectivity after recrystallization, and a diastereoselective net arylation of the minimally modified nonsteroidal anti‐inflammatory drug (NSAID) naproxen.  相似文献   

19.
Targeted drug delivery is a promising approach to overcome the limitations of classical chemotherapy. In this respect, Imatinib‐loaded chitosan‐modified magnetic nanoparticles were prepared as a pH sensitive system for targeted delivery of drug to tumor sites by applying a magnetic field. The proposed magnetic nanoparticles were prepared through modification of magnetic Fe3O4 nanoparticles with chitosan and Imatinib. The structural, morphological and physicochemical properties of the synthesized nanoparticles were determined by different analytical techniques including energy‐dispersive X‐ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), Fourier‐transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HR‐TEM), vibrating sample magnetometry (VSM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). UV/visible spectrophotometry was used to measure the Imatinib contents. Thermal stability of the prepared particles was investigated and their efficiency of drug loading and release profile were evaluated. The results demonstrated that Fe3O4@CS acts as a pH responsive nanocarrier in releasing the loaded Imatinib molecules. Furthermore, the Fe3O4@CS/Imatinib nanoparticles displayed cytotoxic effect against MCF‐7 breast cancer cells. Results of this study can provide new insights in the development of pH responsive targeted drug delivery systems to overcome the side effects of conventional chemotherapy.  相似文献   

20.
In order to limit the side effects associated with antitumor drugs such as doxorubicin, nanosized drug‐delivery systems capable of selectively delivering and releasing the drug in the diseased tissue are required. We describe nanoparticles (NPs), self‐assembled from a reduction responsive amphiphilic peptide, capable of entrapping high amounts of a redox active anticancer drug candidate and releasing it in presence of a reducing agent. This system shows a high entrapment efficiency with up to 15 mg drug per gram of peptide (5.8 mol‐%). Treatment of the NPs with reducing agent results in the disassembly of the NPs and release of the drug molecules. A reduction in cell viability is observed at drug concentrations above 250 nm in HEK293T and HeLa cell lines. This drug delivery system has potential for targeting tumor sites via the EPR effect while taking advantage of the increased reduction potential in tumor microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号