首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nonaqueous diazotization-dediazoniation of two types of aminopurine nucleoside derivatives has been investigated. Treatment of 9-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)-2-amino-6-chloropurine (1) with SbCl(3)/CH(2)Cl(2) was examined with benzyltriethylammonium (BTEA) chloride as a soluble halide source and tert-butyl nitrite (TBN) or sodium nitrite as the diazotization reagent. Optimized yields (>80%) of the 2,6-dichloropurine derivative were obtained with SbCl(3). Combinations with SbBr(3)/CH(2)Br(2) gave the 2-bromo-6-chloropurine product (>60%), and SbI(3)/CH(2)I(2)/THF gave the 2-iodo-6-chloropurine derivative (>45%). Antimony trihalide catalysis was highly beneficial. Mixed combinations (SbX(3)/CH(2)X'(2); X/X' = Br/Cl) gave mixtures of 2-(bromo, chloro, and hydro)-6-chloropurine derivatives that were dependent on reaction conditions. Addition of iodoacetic acid (IAA) resulted in diversion of purine radical species into a 2-iodo-6-chloropurine derivative with commensurate loss of other radical-derived products. This allowed evaluation of the efficiency of SbX(3)-promoted cation-derived dediazoniations relative to radical-derived reactions. Efficient conversions of adenosine, 2'-deoxyadenosine, and related adenine nucleosides into 6-halopurine derivatives of current interest were developed with analogous combinations.  相似文献   

2.
We report efficient syntheses of the clinical agent cladribine (2-chloro-2'-deoxyadenosine, CldAdo), which is the drug of choice against hairy-cell leukemia and other neoplasms, from 2'-deoxyguanosine. Treatment of 3',5'-di-O-acetyl- or benzoyl-2'-deoxyguanosine (1) with 2,4,6-triisopropyl- or 4-methylbenzenesulfonyl chloride gave high yields of the 6-O-arylsulfonyl derivatives 2 or 2'b. Deoxychlorination at C6 of 1 also proceeded to give the 2-amino-6-chloropurine derivative 5 in excellent yields. The nonaqueous diazotization/chloro dediazoniation (acetyl chloride/benzyltriethylammonium nitrite) of 2, 2'b, and 5 gave the 2-chloropurine derivatives 3, 3'b, and 6, respectively. The selective ammonolysis at C6 (arylsulfonate with 3 or chloride with 6) and accompanying deprotection of the sugar moiety gave CldAdo (64-75% overall yield from 1).  相似文献   

3.
Seven purine nucleosides containing the 2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl moiety were synthesized and tested for their antitumor activity. Direct condensation of 3-O-acetyl-5-O-benzoyl-2-deoxy-2-fluoro-D-arabinofuranosyl bromide (1) with N6-benzoyladenine in CH2Cl2 followed by saponification of the product afforded the adenine nucleoside (I, 2'-F-ara-A). Deamination of I with NaNO2 in HOAc gave the hypoxanthine analogue (II, 2'-F-ara-H). The 6-thiopurine nucleoside (III, 2'-F-ara-6MP) was prepared by condensation of 1 with 6-chloropurine by the mercury procedure followed by thiourea treatment and saponification of the product. Methylation of III gave the 6-SCH3 analogue (IV). Raney Ni desulfurization of III afforded the unsubstituted purine nucleoside (V, 2'-F-ara-P). Condensation of 1 with 2-acetamido-6-chloropurine by the silyl procedure afforded the protected 2-acetamido-6-chloropurine nucleoside which served as the precursor for both the guanine and 6-thioguanine nucleosides (VI, 2'-F-ara-G and VII, 2'-F-ara-TG, respectively). Thus, alkaline hydrolysis of the precursor gave VI. Thiourea treatment prior to alkaline hydrolysis gave VII. The new nucleoside, 2'-F-ara-G (VI) is found to be selectively toxic to human T-cell leukemia CCRF-CEM.  相似文献   

4.
5-Endo-dig cycloisomerization of 1,4- and 1,2,4- mostly aryl-substituted but-3-yn-1-ones in the presence of a catalytic amount of zinc chloride etherate (10 mol %) in dichloromethane at room temperature gave 2,5-di- and 2,3,5-trisubstituted furans in high yields (85-97%). DSC studies confirmed that a solely thermal process does not take place. A relevant catalytic process, employing mu-oxo-tetranuclear zinc cluster Zn4(OCOCF3)6O, yielded bicyclic furopyrimidine nucleosides, when starting from acetyl-protected 5-alkynyl-2'-deoxyuridines (85-86%). Furopyrimidine was deprotected or simultaneously converted into pyrrolopyrimidine nucleoside. The time/concentration dependence for the reaction of 1-phenyl-4-(4-methylphenyl)butynone to 2-(4-methylphenyl)-5-phenylfuran displayed first-order kinetics with the rate dependent on catalyst concentration. The plot of ln k(obs) versus ln[ZnCl2] indicated first-order cycloisomerization, as referred to ZnCl2 concentration, using both NMR and UV-vis reaction monitoring. The crystal structure of propyl furopyrimidine nucleoside (orthorhombic, P2(1)2(1)2(1), a/b/c = 5.684(2)/6.682(2)/36.02(2) A, Z = 4) shows C2'- endo deoxyribose puckering, and the base is found in the anti position in crystalline form.  相似文献   

5.
4-Thiouridine, 6-thioguanosine, and 6-thioinosine 3',5'-bisphosphates (9, 20, and 28) were synthesized in good yields by considerably improved methods. In the former two compounds, uridine and 2-N-phenylacetylguanosine were converted via transient O-trimethylsilylation to the corresponding 4- and 6-O-benzenesulfonyl intermediates (2 and 13), which, in turn, were allowed to react with 2-cyanoethanethiol in the presence of N-methylpyrrolidine to give 4-thiouridine (3) and 2-N-phenylacetyl-6-thioguanosine derivatives (14), respectively. In situ dimethoxytritylation of these thionucleoside derivatives gave the 5'-masked products 4 and 15 in high overall yields from 1 and 11. 6-S-(2-Cyanoethyl)-5'-O-(4,4'-dimethoxytrityl)-6-thioinosine (23) was synthesized via substitution of the 5'-O-tritylated 6-chloropurine riboside derivative 22 with 2-cyanoethanethiol. These S-(2-cyanoethyl)thionucleosides were converted to the 2'-O-(tert-butyldimethylsilyl)ribonucleoside 3'-phosphoramidite derivatives 7, 18, and 26 or 3',5'-bisphosphate derivatives 8, 19, and 27. Treatment of 8, 19, and 27 with DBU gave thionucleoside 3',5'-bisphosphate derivatives 9, 20, and 28, which were found to be substrates of T4 RNA ligase. These thionucleoside 3',5'-bisphosphates were examined as donors for ligation with m3(2,2,7) G5'pppAmUmA, i.e., the 5'-terminal tetranucleotide fragment of U1 snRNA, The 4-thiouridine 3',5'-bisphosphate derivative 9 was found to serve as the most active substrate of T4 RNA ligase with a reaction efficiency of 96%.  相似文献   

6.
Liu J  Janeba Z  Robins MJ 《Organic letters》2004,6(17):2917-2919
Mesitoyl or toluoyl esters of inosine and 2'-deoxyinosine were deoxychlorinated at C6 to give the crystalline 6-chloropurine nucleoside derivatives, which underwent quantitative conversion to the 6-iodo analogues with NaI/TFA/butanone at -50 to -40 degrees C. The 6-iodo compounds were efficient substrates for SNAr, Sonogashira, and Suzuki-Miyaura reactions, in contrast with the 6-chloro analogues, and gave good to high yields of C-N and C-C coupled products.  相似文献   

7.
A novel modular, efficient, and practical methodology of preparation of 6-substituted pyridin-2-yl C-nucleosides was developed. An addition of 2-lithio-6-bromopyridine 2b to TBDMS-protected 2-deoxyribonolactone 5 gave aduct 7 as an equilibrium mixture of anomeric hemiketals 1-(6-bromopyridin-2-yl)-1-hydroxynucleosides 7a,b and its open form 7c. Reduction of the adduct 7 with Et3SiH and BF3 x Et2O afforded the desired 6-bromonucleoside 8a as pure beta-anomer in a total yield of 32% over two steps from 5. Intermediate 8a was then subjected to a series of palladium catalyzed cross-coupling reactions and aminations to give a series of protected 1beta-(6-alkyl-, 6-aryl-, and 6-aminopyridin-2-yl)-2-deoxyribonucleosides 9. Catalytic hydrogenation of 8a gave an unsubstituted pyridine C-nucleoside, and diazotative oxodeamination of 6-aminopyridine nucleoside 9f by isopentyl nitrite in acetic acid gave 6-oxopyridine nucleoside 10i. Deprotection of silylated nucleosides 9 by Et3N.3HF gave a series of free C-nucleosides 10.  相似文献   

8.
孙莉萍  夏然 《应用化学》2019,36(3):300-305
为了发展有效合成α-腺嘌呤阿拉伯糖苷的方法,以1,2,3,5-四-O-乙酰基-β-D-阿拉伯糖和6-氯嘌呤为原料,在微波辐射和无溶剂、无催化剂条件下反应得到中间体9-α-D-(2',3',5'-三-O-乙酰基)阿拉伯呋喃糖基-6-氯嘌呤,收率85%。 该中间体物在Na2CO3催化下脱除乙酰基,然后“一锅”加入饱和的NH3/CH3OH溶液氨解,以90%的收率得到α-腺嘌呤阿拉伯糖苷。 关键中间体9-α-D-(2',3',5'--O-乙酰基)阿拉伯呋喃糖基-6-氯嘌呤的合成反应规模可以扩大到100 g。 类似地合成α-2-氟腺嘌呤阿拉伯糖苷和α-2-氨基腺嘌呤阿拉伯糖苷。  相似文献   

9.
Treatment of 1-(2'-bromo-3',4'-dialkoxybenzyl)-1,2,3, 4-tetrahydroisoquinoline carbamates, 1a,c, with excess alkyllithium gave 8-oxoberbines, 2a,c, which were successively attacked in situ with another molecule of alkyllithium to give 1,2 and/or 1,4 addition products. A primary alkyllithium, such as MeLi or BuLi, gave a 1,2 addition product, 8-methyleneberbine 9a or 8-butylideneberbine 3a. t-BuLi preferred 1,4 addition, followed by elimination of the alkoxy group, to give 9-tert-butyl-8-oxoberbine 6a or 7c. s-BuLi gave a mixture of 1,2 and 1,4 addition products, 1-[2'-(2' '-methylbutyryl)benzyl]-1,2,3,4-tetrahydroisoquinoline 4a and 9-s-butyl-8-oxoberbine 5a. Similar treatments of carbamate 1b having no alkoxy group at its 3' position gave 1,2 addition products, 8-butylideneberbine 3b, 1-[2'-(2' '-methylbutyryl)benzyl]-1,2,3, 4-tetrahydroisoquinoline 4b, and 1-(2'-pivaloylbenzyl)-1,2,3, 4-tetrahydroisoquinoline 6b, in all cases. Reactions of 1a with s-BuMgCl and isoPrMgCl also gave the 1,4 adduct, 5a, and its 9-isoPr analogue, 12a. Treatment of 9a with excess NaBH(4) in AcOH gave (+/-)-coralydine (10b).  相似文献   

10.
以鸟苷(1)为原料, 经过糖环保护得到2',3',5'-三-O-乙酰基鸟嘌呤核苷(2), 化合物2与三氯氧磷反应得到2-氨基-6-氯-9-(2',3',5'-三-O-乙酰基-β-D-呋喃核糖基)嘌呤(3), 化合物3经重氮化后再与二烷基二硫醚反应得到2-烷硫基-6-氯-9-(2',3',5'-三-O-乙酰基-β-D-呋喃核糖基)嘌呤(4a~4d), 化合物4a~4d与胺进行亲核取代反应后, 脱去糖环保护得到12个新型的6-取代氨基-2-烷硫基腺苷化合物(5a~5l). 采用1H NMR, 13C NMR, IR和高分辨质谱(HRMS)对目标化合物的结构进行了确证, 并对所有化合物进行了体外抗血小板聚集活性测试. 结果表明, 当测试浓度为10 μmol/L时, 化合物5a~5l仍具有一定的抗凝活性, 其中, 6-(3-苯基丙基)氨基-2-丙硫基腺苷(5d)活性最为显著, 抑制率可达90.2%.  相似文献   

11.
The synthesis of the enantiomerically pure bis(hydroxymethyl)-branched cyclohexenyl and cyclohexyl purines is described. Racemic trans-4,5-bis(methoxycarbonyl)cyclohexene [(+/-)-6] was reduced with lithium aluminum hydride to give the racemic diol (+/-)-7. Resolution of (+/-)-7 via a transesterification process using lipase from Pseudomonas sp. (SAM-II) gave both diols in enantiomerically pure form. The enantiomerically pure diol (S,S)-7was benzoylated and epoxidized to give the epoxide 9. Treatment of the epoxide 9 with trimethylsilyl trifluoromethanesulfonate and 1,5-diazabicyclo[5.4.0]undec-5-ene followed by dilute hydrochloric acid gave (1R,4S,5R)-4,5-bis[(benzoyloxy)methyl]-1-hydroxycyclohex-2-ene (10). Acetylation of 10 gave (1R,4S,5R)-1-acetoxy-4,5-bis[(benzoyloxy)methyl]cyclohex-2-ene (11). (1R,4S,5R)-1-Acetoxy-4,5-bis[(benzoyloxy)methyl]cyclohex-2-ene (11) was converted to the adenine derivative 12 and guanine derivative 13 via palladium(0)-catalyzed coupling with adenine and 2-amino-6-chloropurine, respectively. Hydrogenation of 12 and 13 gave the correspondning saturated adenine derivative 14 and guanine derivative 15. (1R,4S,5R)-4,5-Bis[(benzoyloxy)methyl]-1-hydroxycyclohex-2-ene (10) was converted to the adenine derivative 16 and guanine derivative 17 via coupling with 6-chloropurine and 2-amino-6-chloropurine, respectively, using a modified Mitsunobu procedure. Hydrogenation of 16 and 17 gave the corresponding saturated adenine derivative 18 and guanine derivative 19. Compounds 12-19 were evaluated for activity against human immunodeficiency virus (HIV), but were found to be inactive. Further biological testings are underway.  相似文献   

12.
Condensation of o-bromomethylphenylacetonitrile with arylcarbohydrazides gave, depending on the reaction conditions, 2-arylcarboxamido-1,4-dihydroisoquinoline-3(2H)-imine hydrobromides or 2-aryl-5,10-dihydro[1,2,4]triazolo[1,5-b]isoquinolines. Analogous condensation of 4-(2-bromomethylphenyl)tetrahydro-2H-pyran-4-carbonitrile and 1-(2-bromomethylphenyl)-1-cyclopentanecarbonitrile with arylcarbohydrazides gave respectively 2-aryl-2,3,5,6-tetrahydrospiro[4H-pyran-4,10'(5'H)-[1,2,4]triazolo[1,5-b]isoquinolines and 2-arylspiro[1,2,4]triazolo[1,5,b]isoquinoline-10(5'H)-1'-cyclopentanes, derivatives of new spirane heterocycles. The reaction with condensing agents of 3-imino-2,2',3,3'5',6'-hexahydrospiro[isoquinoline-4(1H),4'-4H-pyran]-2-amine and 3-imino-2,3-dihydrospiro[isoquinoline-4(1H),1'-cyclopentane]-2-amine hydrobromides, synthesized from the corresponding bromo nitriles and hydrazine, may serve as an alternative route for the synthesis of these compounds. The structure of obtained triazoloisoquinolines was established from IR, 1H and 13C NMR spectra. An X-ray crystallographic study of 2-phenylspiro[1,2,4]triazolo[1,5-b]isoquinoline-10(5H),1'-cyclopentane was carried out.  相似文献   

13.
本文报道以次黄苷为原料, 经酯化, 再在缩合剂4-氯苯磷酰二氯存在下与吡啶反应, 形成嘌呤N-6-吡啶盐中间体2, 该中间体2分别与碱性强弱不同的胺或氨及2moldm^-^3NaOH的醇溶液在室温反应, 可方便的合成6-NH2, 6-OCH3以及6-OCH2CH3-9-(β-D-呋喃核糖)嘌呤衍生物。并对以上产物形成的机制作了探讨。  相似文献   

14.
Cycloaddition of the azide derivative 5 with 1,4‐dihydroxybutyne afforded the N‐thio‐acyclic nucleoside 6 , which prepared alternatively from coupling of the bromo derivative 8 with 2‐acetoxy‐ethylmercaptan. Deblocking of 6 gave the free nucleoside 7 . Mesylation of 6 furnished the dimesylate 9 , which gave three rearranged products 14–16 on treatment with chloride anion. These compounds might be obtained via the episulfonium ion 10 , which is subjected to nucleophilic displacement and further sulfur participation. Deblocking of 14–16 afforded the free nucleoside analogues 17–19 , and their structures were confirmed by COSY, ROESY, HMQC, and HMBC NMR techniques. Compound 16 was prepared alternatively from chlorination of alcohol 6 with Ph3P‐CCl4. Carbomoylation of 6 led to the carbamate 20 , which gave the free nucleoside analogue 21 on deblocking. © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:380–387, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20030  相似文献   

15.
A simple and high-yield synthesis of biologically significant 2′-deoxy-6-thioguanosine ( 11 ), ara-6-thioguanine ( 16 ) and araG ( 17 ) has been accomplished employing the Stereospecific sodium salt glycosylation method. Glycosylation of the sodium salt of 6-chloro- and 2-amino-6-chloropurine ( 1 and 2 , respectively) with 1-chloro-2-deoxy-3,5-di-O-(p-toluoyl)-α-D-erythro-pentofuranose ( 3 ) gave the corresponding N-9 substituted nucleosides as major products with the β-anomeric configuration ( 4 and 5 , respectively) along with a minor amount of the N-7 positional isomers ( 6 and 7 ). Treatment of 4 with hydrogen sulfide in methanol containing sodium methoxide gave 2′-deoxy-6-thioinosine ( 10 ) in 93% yield. Similarly, 5 was transformed into 2′-deoxy-6-thioguanosine (β-TGdR, 11 ) in 71 % yield. Reaction of the sodium salt of 2 with 1-chloro-2,3,5-tri-O-benzyl-α-D-arabinofuranose ( 8 ) gave N-7 and N-9 glycosylated products 13 and 9 , respectively. Debenzylation of 9 with boron trichloride at ?78° gave the versatile intermediate 2-amino-6-chloro-9-β-D-arabinofuranosyl-purine ( 14 ) in 62% yield. Direct treatment of 14 with sodium hydrosulfide furnished ara-6-thioguanine ( 16 ). Alkaline hydrolysis of 14 readily gave 9-β-D-arabinofuranosylguanine (araG, 17 ), which on subsequent phosphorylation with phosphorus oxychloride in trimethyl phosphate afforded araG 5′-monophosphate ( 18 ).  相似文献   

16.
The synthesis of [4,5-bis(hydroxymethyl)-1,3-dithiolan-2-yl]nucleosides is described. (2S,3S)-1,2:3,4-Diepoxybutane (13) was reacted with potassium thiocyanate to give (2R,3R)-1,2:3,4-diepithiobutane (14). Thiiranering opening with acetate followed by deacetylation gave (2R,3R)-2,3-dithiothreitol (19) which was silylated and treated with trimethyl orthoformate to give the 2-methoxy-1,3-dithiolane 20. Condensation of 20 with silylated thymine, uracil, N(4)-benzoylcytosine and 6-chloropurine using a modified Vorbrüggen procedure, followed by deprotection, gave the nucleoside analogues. Compounds 26, 28, and 30 were found to be inactive when tested for anti-HIV activity in vitro.  相似文献   

17.
X-ray crystal structures of several 6-(azolyl)purine base and nucleoside derivatives show essentially coplanar conformations of the purine and appended 6-(azolyl) rings. However, the planes of the purine and imidazole rings are twisted approximately 57 degrees in a 2-chloro-6-(4,5-diphenylimidazol-1-yl)purine nucleoside, and a twist angle of approximately 61 degrees was measured between the planes of the purine and pyrrole rings in the structure of a 6-(2,5-dimethylpyrrol-1-yl)purine nucleoside derivative. Shielding "above" N7 of the purine ring by a proximal C-H on the 6-azolyl moiety is apparent with the coplanar compounds, but this effect is diminished in those without coplanarity. Syntheses of 6-(azolyl)purines from both base and nucleoside starting materials are described. Treatment of 2,6-dichloropurine with imidazole gave 2-chloro-6-(imidazol-1-yl)purine. Modified Appel reactions at C6 of trityl-protected hypoxanthine and guanine derivatives followed by detritylation gave 6-(imidazol-1-yl)- and 2-amino-6-(imidazol-1-yl)purines. Imidazole was introduced at C6 of 2',3',5'-tri-O-acetylinosine by a modified Appel reaction, and solvolysis of the glycosyl linkage gave 6-(imidazol-1-yl)purine. Guanosine triacetate was transformed into the protected 2,6-dichloropurine nucleoside, which was subjected to S(N)Ar displacement with imidazoles at C6 followed by glycosyl solvolysis to provide 2-chloro-6-(substituted-imidazol-1-yl)purines. Potential applications of these purine derivatives are outlined.  相似文献   

18.
4‐Methyl acetanilide ( 1 ) on treatment with bromine in acetic acid, followed by hydrolysis with dilute HCl/NaOH solution, yielded 2‐bromo‐4‐methyl aniline ( 2 ), which on treatment with sodium thiocyanate in acetic acid afforded 2‐amino‐4‐bromo‐6‐methyl benzothiazole ( 3 ). Compound 3 in ethylene glycol was heated at 150°C with 80% hydrazine hydrate to get 4‐bromo‐2‐hydrazino‐6‐methyl benzothiazole ( 4 ). This hydrazino compound 4 on heating with formic acid for 3 h yielded 4‐bromo‐2‐hydrazinoformyl‐6‐methyl benzothiazole ( 5 ). Same compound 4 when heated independently with formic acid for 6 h/urea for 3 h/carbon disulfide in alkali afforded 5‐bromo‐7‐methyl ( 6 )/5‐bromo‐3‐hydroxy‐7‐methyl ( 7 )/5‐bromo‐3‐mercapto‐7‐methyl ( 8 )‐1,2,4‐triazolo‐[3,4‐b]‐benzothiazoles, respectively. Compound 4 on heating with acetic acid/acetic anhydride gave acetyl benzothiazolyl derivative 9 , which on cyclization with orthophosphoric acid yielded 5‐bromo‐3,7‐dimethyl‐1,2,4‐triazolo‐[3,4‐b]‐benzothiazole ( 10 ). All these newly synthesized compounds were screened for antimicrobial activity against Escherichia coli (Gram ?ve), Bacillus subtilis (Gram +ve), Erwinia carotovora, and Xanthomonas citri using ampicillin, streptomycin, and penicillin as a standard for comparison.  相似文献   

19.
The 3'-iodonucleosides 4 have been synthesized by condensation of silylated 5-alkyluracils 2 with methyl 5-O-tert-butyldiphenylsilyl-2,3-dideoxy-3-iodo-D-threo-pentofur anoside (3). 4 was treated with sodium azide and the deprotected nucleoside 5 was subsequently obtained by treatment with tetrabutylammonium fluoride. The nucleoside 4 produced the corresponding 2',3'-didehydro-2',3'-dideoxy nucleoside 6 and 3',4'-didehydro-2',3'-dideoxy nucleoside 7 in elimination reactions on treatment with sodium methoxide.  相似文献   

20.
Carbocyclic 9-deazapurine nucleosides (1-4), a spiranic pyrimidone carbocyclic compound (5), and an unusual carbocyclic isonucleoside (6) were prepared as enantiomerically pure compounds via the key intermediates 10 and 21 from 1,4-gamma-ribonolactone. The key intermediate 10 was prepared by stereoselective reduction with Bu3SnH and then converted to carbocyclic C-ribonucleosides 1, 3, and 4. 2',3'-Didehydro-2',3'-dideoxycarbocyclic 9-deazainosine (2) was prepared from a 2',3'-dimesylate 17 by treatment with Li2Te followed by an acidic deprotection. The key bicyclic intermediate 21 was prepared from a diol 20 by an intramolecular cyclization using CHI3-Ph3P-imidazole and converted to the spiranic compound 5 and an olefinic nucleoside 6 by the construction of the heterocyclic moiety followed by deprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号