首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Temperature-dependent photoluminescence spectra of the germanium bottom cell of triple-junction solar cells unirradiated and irradiated with 1?MeV electrons were measured in the 10–300?K temperature range. In unirradiated germanium bottom cell, the spectra show that the PL intensity increases with temperature but slightly decreases at around 250?K because of the intrinsic defect. However, in irradiated germanium bottom cell, the spectra show that there are two negative thermal quenching processes (10–90?K and 200–270?K) and two usual thermal quenching processes (90–200?K and 270–300?K) as a result of the radiation-induced defects Ec ? 0.37?eV and Ec ? 0.12?eV.  相似文献   

2.
3.
Abstract

A molten mixture of sodium nitrate–sodium nitrite is an important heat transfer and storage medium. It is important to research the thermal stability of such melts. In the present study, the equilibrium between nitrate and nitrite ion in sodium nitrate–sodium nitrite melts under air atmosphere was studied by Raman spectroscopy and the thermal stability of the melts was analyzed. The results show that when the temperature was greater than 644?K, for melts in which the weighted-in content of sodium nitrate is 90 mass %, the content of nitrate ion decreased slightly with temperature. However, for melts in which the weighted-in content of sodium nitrate was 10–80 mass %, the content of nitrate ion increased with temperature. Melts in which the weighted-in fraction of sodium nitrite were 15.22%, 14.71%, and 14.60% under air atmosphere showed optimal thermal stability at 644?K, 762?K, and 880?K, respectively. The findings of this study have provided a foundation for optimizing the composition of molten salts and for providing molten mixtures applicable to important industrial processes.  相似文献   

4.
Song Hi Lee  Jahun Kim 《Molecular physics》2013,111(14):1926-1933
ABSTRACT

Molecular dynamics simulations of various water models – SPC/E (extended simple point charge), TIP4P (transferable intermolecular potential 4 points), and TIP4P/2005 – have been carried out in the canonical (NVT fixed) ensemble over the range of temperatures 243–550?K with Ewald summation. The transport properties (self-diffusion coefficients D, viscosities η, and thermal conductivities λ) of SPC/E, TIP4P, and TIP4P/2005 water were evaluated at 243–550?K and compared with experimental data. The temperature dependence of transport properties of SPC/E, TIP4P and TIP4P/2005 water was discussed to determine how reliable the models are over this temperature range.  相似文献   

5.
Abstract

A para-aramid fiber whose main chain contained heterocyclic units was prepared by low temperature copolycondensation, wet-spinning, and high temperature thermal treatment. The prepared fibers (named F-368) and two commercial aramid fibers, K49 (Kevlar 49, Dupont de Nemours Co., USA) and APMOC (Kamenskvolokno and Tver’khimvolokno, Russia), were characterized and analyzed in detail. Infrared spectroscopy (IR) and wide-angle X-ray diffraction (WAXD) were employed to characterize their chemical and aggregation structures, respectively. The results showed the introduction of heterocyclic units into the wholly para-aromatic polyamide backbone of K49 in the F-368 and APMOC reduced the crystallinity significantly. The tenacity of F-368 and APMOC were 32.2 and 30.5cN/dtex, which were about 68% and 59% higher than that of K49, respectively. Thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) were used to investigate their thermal properties; the results indicated that these aramid fibers showed exceptional thermal properties with glass transition temperatures of 240–260?°C, and decomposition temperatures at 510–560?°C, both in nitrogen and air. The TGA results also showed the decomposition mechanism of K49 and the heterocyclic aramid fibers in nitrogen and air were different. The decomposition temperature of K49 was higher than that of the heterocyclic copolyaramid fibers both in nitrogen and air. On the contrary, the char yields of the heterocyclic copolyaramid fibers at 800?°C were higher than that of K49 in both nitrogen and air.  相似文献   

6.
7.
Poly(vinyl alcohol) (PVA) polymer was prepared using the casting technique. The obtained PVA thin films have been irradiated with electron beam doses ranging from 20 to 300 kGy. The resultant effect of electron beam irradiation on the structural properties of PVA has been investigated using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), while the thermal properties have been investigated using thermo-gravimetric analysis and differential thermal analysis (DTA). The onset temperature of decomposition T 0 and activation energy of thermal decomposition E a were calculated, results indicate that the PVA thin film decomposes in one main weight loss stage. Also, the electron beam irradiation in dose range 95–210 kGy led to a more compact structure of the PVA polymer, which resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition. The variation of transition temperatures with electron beam dose has been determined using DTA. The PVA thermograms were characterized by the appearance of an endothermic peak due to melting. In addition, the transmission of the PVA samples and any color changes were studied. The color intensity Δ E was greatly increased with increasing electron beam dose, and was accompanied by a significant increase in the blue color component.  相似文献   

8.
The ac conductivity (σac) and dielectric permittivity (?) are determined in the temperature range 300?K?T3 compound. The results indicated that the compound behaves as an improper ferroelectric and undergoes a ferroelectric phase transition from a high temperature rhombohedral phase I to a low temperature monoclinic phase II at T c?=?(486?±?1)?K. A second structural phase transition was observed around 345?K. The conductivity varies with temperature range and for T?>?428?K intrinsic conduction prevails. Different activation energies in the different temperature regions were calculated. The frequency dependence of σ(ω) was found to follow the universal dynamic response [σ(ω)∝(ω) s(T)]. The thermal behaviour of the frequency exponent s(T) suggests the hopping over the barrier model rather than the quantum mechanical tunneling model for the conduction mechanism.  相似文献   

9.
Bayfol CR 1-4 polycarbonate is a class of polymeric solid state nuclear track detector which has many applications in various radiation detection fields. Samples from sheets of Bayfol have been irradiated with gamma doses ranging from 100 to 620 kGy. The structural modifications in the gamma-irradiated Bayfol samples have been studied as a function of dose, using different characterization techniques such as X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, intrinsic viscosity and refractive index. The results indicate that the carbonyl group (C?O) degraded under irradiation up to 200 kGy. This degradation, reported by FTIR spectroscopy enhanced the degree of ordering in the degraded samples as revealed by the XRD technique. Above 200 and up to 620 kGy, cross-linking is achieved, leading to an increase in the intrinsic viscosity from 0.41 to 0.78 at 35°C, indicating an increase in the average molecular mass. On the other hand, the resultant effect of gamma irradiation on the thermal properties of Bayfol has been investigated using thermo-gravimetric analysis, results indicating that the gamma irradiation in the dose range 200–620 kGy led to a more compact structure of Bayfol polymer, which resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition due to cross-linking. In addition, the V–I characteristics of the polymer samples were performed, results indicated that at higher voltage, the conduction mechanism of Bayfol CR 1-4 was identified as the Poole–Frenkel type.  相似文献   

10.
Abstract

An abnormally low wBN thermal stability, caused by the imperfection of the structure, has been observed for the material produced under high static pressures from pyrolytic rBN. Endothermic wBN→rBN transformation occurs in 490–710 K range by the inverse crystallographic mechanism.  相似文献   

11.
The thermal conductivities of compression molded thin films of poly-p-phenylene-2,6-benzobisoxazole (PBO) were measured in directions along an in-plane axis in the 10–300?K temperature range by a steady-state heat flow method, with interest in the use of the material for superconductivity applications. The thermal conductivities of the PBO films increased from 0.3?W/mK to 9.0?W/mK with increasing temperature from 10?K to 300?K and these were much higher than those of polyimide films, epoxy resin and glass fiber reinforced plastics at all temperatures. The 9.0?W/mK at 300?K was 60% of that of stainless steel (SUS304). It was 6?W/mK at 150?K, which was half that of SUS304 and was 3.3?W/mK at 77?K, which was 33% of that of SUS304. The thermal conductivities of the PBO films were lower than those of a cloth of high strength ultrahigh molecular weight polyethylene fiber reinforced plastics in the 30?K–180?K temperature range and were almost equivalent to its values in the 180?K–300?K temperature range. The main contribution to the thermal conduction in the PBO films was from thermal phonon conduction along the molecular chains. Although many kinds of high thermal conductivity polymeric materials have been prepared by a uni-directional drawing process or by adding high thermal conductive additives, the PBO film showed high thermal conductivity without a uni-directional drawing process or high thermal conductive additive.  相似文献   

12.
Samples from sheets of the polymeric material Makrofol DE 7-2 have been exposed to 1 MeV protons of fluences in the range 2.5×1013–5×1015 p/cm2. The resultant effect of proton irradiation on the thermal properties of Makrofol has been investigated using thermogravimetric analysis and differential thermal analysis (DTA). The onset temperature of decomposition T o and the activation energy of thermal decomposition E a were calculated, and the results indicated that the Makrofol detector decomposes in one weight loss stage. Also, the proton irradiation in the fluence range 7.5×1013–5×1015 p/cm2 led to a more compact structure of Makrofol polymer, which resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition. The variation of transition temperatures with proton fluence has been determined using DTA. The Makrofol thermograms were characterized by the appearance of an endothermic peak due to the melting of the crystalline phase. The melting temperature of the polymer, T m, was investigated to probe the crystalline domains of the polymer. At a fluence range of 7.5×1013–5×1015 p/cm2, the defect generated destroys the crystalline structure, thus reducing the melting temperature. In addition, the VI characteristics of the polymer samples were investigated. The electrical conductivity was decreased with the increasing proton fluence up to 5×1015 p/cm2. Further, the refractive index, transmission of the samples and any color changes were studied. The color intensity Δ E was greatly increased with the increasing proton fluence and was accompanied by a significant increase in the red and yellow color components.  相似文献   

13.
A series of polyurethane elastomers (PUE) incorporating TDI (toluene diisocyanate) trimer were synthesized via an in-situ polymerization and prepolymer process. It was found that for the sample with 10 wt% or less TDI trimer, the stress–strain curves of PUE exhibited the characteristics of a ductile failure with relatively high tensile strength and elongation at break. However, with incorporation 20~30 wt% of TDI trimer, the samples changed to brittle fracture. All PUE samples exhibited a loss peak corresponding to the glass transition temperature (Tg ) of the soft-segments, which shifted to higher temperature and decreased in peak height by incorporation of the three-functional isocyanurate rings. Although the TDI trimer modified PUE showed only slightly higher onset and peak degradation values than that of PUE in the absence of TDI trimer, there were still big differences in the end temperatures of the second stage. The value of activation energy and frequency factor fluctuated for varying samples, indicating that the thermal stability of PUE can be improved to a certain degree by incorporation of TDI trimer, but not so remarkably.  相似文献   

14.
Samples from Cellulose triacetate (CTA) sheets were irradiated with electron beam in the dose range 10–200 kGy. Non-isothermal studies were carried out using thermogravimetric analysis (TGA) to obtain the activation energy of thermal decomposition for CTA polymer. The CTA samples decompose in one main break down stage. The results indicate that the irradiation by electron beam in the dose range 80–200 kGy increases the thermal stability of the polymer samples. Also, the variation of melting temperatures with the electron dose has been determined using differential thermal analysis (DTA). The CTA polymer is characterized by the appearance of one endothermic peak due to melting. It is found that the irradiation in the dose range 10–80 kGy causes defects generation that splits the crystals depressing the melting temperature, while at higher doses (80–200 kGy), the thickness of crystalline structure (lamellae) is increased, thus the melting temperature increases. In addition, the transmission of these samples in the wavelength range 200–2500 nm, as well as any color changes, were studied. The color intensity ΔE* was greatly increased on increasing the electron beam dose, and accompanied by a significant increase in the blue color component.   相似文献   

15.
Abstract

Hot-press compression molding was attempted to resinify two renewable source-derived linear (1→3)-β-D-glucan polymers, i.e., paramylon or curdlan via the generation of reactive aldehyde groups that tend to crosslink with hydroxyl groups of the glucans. As for the paramylon, the optimal molding temperature was found to be around 220?°C, keeping the pressure at 20?MPa for 3?min, due to its highly crystalline structure. On the other hand, the curdlan resin was producible in the temperature range of 180–240?°C at the same pressure and pressing time. Dynamic mechanical analysis revealed a large temperature dependence of the loss modulus, E’’, for the paramylon-based polymer resin whereas the semi-crystalline curdlan resin was stable in terms of both the storage and loss moduli, E’ and E’’, up to 160?°C. The vaporization of the water formed during the molding, due to the thermal decomposition, and the adsorption of moisture due to the hydrophilic property of the paramylon affected the thermal stability. The curdlan resin exhibited flexural strength and modulus extremely superior to those of regenerated and esterified curdlan films, and even a little superior to those of polyamide-12. The strain at break was comparable to the yield strain of an epoxy resin. On the other hand, the paramylon-based polymer resin was producible, but the resinification property and thermal stability of the paramylon resin was inferior to the curdlan resin due to the former’s highly crystalline structure.  相似文献   

16.
ABSTRACT

In this study, we investigated the graft copolymerization of methyl methacrylate (MMA) onto low-density polyethylene (LDPE) in the presence of aniline as an inhibitor by gamma radiation. An alkaline treatment was carried out for the prepared graft copolymer. The structural properties of the prepared samples were examined via X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD peaks were slightly shifted, indicating an interaction between MMA and the polyethylene matrix. The morphology of the samples confirmed the homogenous grafted phase scattered onto the LDPE surface. Analysis of the absorption spectra indicated an allowed indirect transition mechanism. The Urbach energy (EU) results showed that the value of the EU for grafted LDPE was found to be higher than that of pure LDPE—up to 15?kGy irradiation dose, although this value decreases upon grafting. However, the value of the EU for alkaline-treated grafted films decreases systematically by increasing the degree of grafting. The thermogravimetric analysis (TGA) of the sample indicated that the thermal stability of LDPE samples is significantly changed by grafting MMA onto it. Horowitz and Metzger's models were utilized to measure the activation energy of the thermal decomposition of all samples.  相似文献   

17.
The thermal stability of high-density polyethylene, as characterized by an Oxidation Induction Time (OIT) test in the presence of the three additives, antioxidant, carbon black and nanoclay, was investigated. The twenty experiments used were designed by using the Central Composite Design (CCD) method, and the effects of the main parameters and their interactions were analyzed. The results of Analysis of Variance (ANOVA) showed that the antioxidant, nanoclay and carbon black contents, the antioxidant-nanoclay interaction and the antioxidant-carbon black interaction, had significant effects on the thermal stability. By optimization of the percent compositions used, the best composition was obtained, 0.26%, 2.21% and 4.69% for antioxidant, carbon black and nanoclay, respectively, to achieve thermal stability equal to the targeted value of 60?minutes. X-ray diffraction confirmed a weak polymer-nanocaly interaction in the optimal sample structure. The rheology frequency sweep test showed an increase in the elastic and viscous modulus in the optimal sample relative to the control samples. The Melt Flow Index (MFI) test for an optimum sample showed a pseudo-plastic structure with the lowest melt flow index of 0.2614 g/10 min, which was consistent with the results of the complex viscosity, with the optimal sample having the highest value (128500?Pa.s). The density test indicated the most crystalline structure for the optimized sample, with the highest value (0.976?g/cm3) compared to the control samples (0.962 and 0.957?g/cm3 for the polyethylene/nanoclay and the polyethylene/carbon black sample, respectively).  相似文献   

18.
Abstract

Fluorene-based poly(imino ketone) with fluorine atoms in the side chains (PIKF-F), as an intelligent, high-performance polymer, was synthesized by the reaction of 4,4′-dibromobenzophenone and 9,9-bis(3-F-4-aminophenyl) fluorene via a palladium catalyzed C-N cross-coupling reaction. Its structure was characterized by means of FT-IR and 1H NMR spectroscopy. The results showed a good agreement with the proposed structure. The molecular weights of the PIKF-F were measured by GPC (calibrated by polystyrene standards). The Mn and Mw values were 64,800 and 153,300, respectively. Thermogravimetric analysis and differential scanning calorimetry measurements showed that the polymer possessed good thermal stability with a high 10% decomposition temperature (450?°C) and a high glass transition temperature (Tg = 250?°C). The PIKF-F exhibited UV (ultra violet) absorption bands at 340–370?nm in NMP solution, while the fluorescence spectra showed maximum emission of PIKF-F at 498?nm in NMP solution. Both optical properties indicate the PIKF-F is of potential use as an organic photoelectric material. Additionally, due to its special conjugated system and the intramolecular hydrogen bonding (N–H···F), it was endowed with significantly strong photonic luminescence and the change of fluorescent intensity was reversible as the temperature was changed.  相似文献   

19.
This study evaluated high pressure processing (P1 – 400?MPa/5?min; P2 – 550?MPa/2?min) and thermal pasteurization (TP – 70°C/30?s) effects on sweet cherry juice's microbiological and physicochemical parameters, during four weeks of refrigerated storage. All treatments reduced the microbiological load to undetectable levels not affecting total soluble solids and titratable acidity. The pH increased with all treatments, however, it decreased during storage. Phenols were differently affected: TP increased them by 6%, P1 had no effect while P2 decreased them by 11%. During storage, phenols in control and TP samples decreased by 26% and 20%, P1 samples decreased them by 11% whereas P2 showed no variation. TP had no effect on anthocyanins, while pressure treatments increased them by 8%. Anthocyanins decreased during storage, particularly in the control and P1 (decreasing 41%). All treatments had no effect on antioxidant activity until the 14th day, thereafter high pressure processing samples showed the highest antioxidant activity.  相似文献   

20.
A series of compounds , , were synthesised by reaction sintering. From Rietveld refinements isotypism was determined in all cases with the -(skutterudite)-type, space group - No. 204. These refinements also served to derive the Yb-content in the samples. There is a systematic trend for the Yb-occupancy in the parent lattice , revealing a gradual decrease of the Yb-content from x =0.8 (), x =0.5 (FeCo), x =0.2 (Co), x =0.1 (Rh) to (Ir). This dependency seems to correlate with the thermal stability of the ternary compounds: a true ternary compound forms for , whilst for stable binary skutterudite compounds already exist. Measurements of various bulk properties revealed the absence of any long range magnetic order in this series of compounds. While the samples rich in Yb behave metallic like, the Rh and Ir based skutterudites show a semiconducting-like resistivity which at lower temperatures is characterised by variable range hopping in the presence of strong Coulomb interaction. Although exhibits a Seebeck coefficient up to about 150 μV/K, figures of merit ZT generally are below 0.1 near room temperature, primarily due to the large resistivities of the sintered material. Received 15 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号