首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The dynamics of quantum discord for two identical qubits in two independent single-mode cavities and a common single-mode cavity are discussed. For the initial Bell state with correlated spins, while the entanglement sudden death can occur, the quantum discord vanishes only at discrete moments in the independent cavities and never vanishes in the common cavity. Interestingly, quantum discord and entanglement show opposite behavior in the common cavity, unlike in the independent cavities. For the initial Bell state with anti-correlated spins, quantum discord and entanglement behave in the same way for both independent cavities and a common cavity. It is found that the detunings always stabilize the quantum discord.  相似文献   

2.
张修兴  李福利 《中国物理 B》2011,20(11):110302-110302
The correlation dynamics are investigated for various bi-partitions of a composite quantum system consisting of two qubits and two independent and non-identical noisy environments. The two qubits have no direct interaction with each other and locally interact with their environments. Classical and quantum correlations including the entanglement are initially prepared only between the two qubits. We find that contrary to the identical noisy environment case, the quantum correlation transfer direction can be controlled by combining different noisy environments. The amplitude-damping environment determines whether there exists the entanglement transfer among bi-partitions of the system. When one qubit is coupled to an amplitude-damping environment and the other one to a bit-flip one, we find a very interesting result that all the quantum and the classical correlations, and even the entanglement, originally existing between the qubits, can be completely transferred without any loss to the qubit coupled to the bit-flit environment and the amplitude-damping environment. We also notice that it is possible to distinguish the quantum correlation from the classical correlation and the entanglement by combining different noisy environments.  相似文献   

3.
颜益营  秦立国  田立君 《中国物理 B》2012,21(10):100304-100304
We study the dynamics of quantum discord and entanglement for two spin qubits coupled to a spin chain with Dzyaloshinsky-Moriya interaction.In the case of a two-qubit with an initial pure state,quantum correlations decay to zero at the critical point of the environment in a very short time.In the case of a two-qubit with initial mixed state,it is found that quantum discord may get maximized due to the quantum critical behavior of the environment,while entanglement vanishes under the same condition.Besides,we observed a sudden transition between classical and quantum decoherence when only a single qubit interacts with the environment.The effects of Dzyaloshinsky-Moriya interaction on quantum correlations are considered in the two cases.The decay of quantum correlations is always strengthened by Dzyaloshinsky-Moriya interaction.  相似文献   

4.
Preventing quantum entanglement from decoherence effect is of theoretical and practical importance in the quantum information processing technologies.In this regard,we consider the entanglement dynamics of two identical qubits where the qubits which are coupled to two independent(Markovian and/or non-Markovian) as well as a common reservoir at zero temperature are further interacted with a classical driving laser field.Then,we study the preservation of generated two-qubit entanglement in various situations using the concurrence measure.It is shown that by applying the classical driving field and so the possibility of controlling the Rabi frequency,the amount of entanglement of the two-qubit system is improved in the off-resonance condition between the qubit and the central cavity frequencies(central detuning) in both non-Markovian and Markovian reservoirs.While the central detuning has a constructive role,the detuning between the qubit and the classical field(laser detuning) affects negatively on the entanglement protection.The obtained results show that long-living entanglement in the non-Markovian reservoir is more accessible than in the Markovian reservoir.We demonstrate that,in a common reservoir non-zero stationary entanglement is achievable whenever the two-qubit system is coupled to the reservoir with appropriate values of relative coupling strengths.  相似文献   

5.
We investigate the entanglement dynamics of a quantum system consisting of two-level atoms interacting with vacuum or thermal fields with classical driving fields. We find that the entanglement of the system can be improved by adjusting the classical driving field. The influence of the classical field and the purity of the initial state on the entanglement sudden death is also studied. It is shown that the time of entanglement sudden death can be controlled by the classical driving fields. Particularly, the entanglement sudden death phenomenon will disappear if the classical driving fields are strong enough.  相似文献   

6.
7.
We investigate the effects of classical driving fields on the dynamics of purity, spin squeezing, and genuine multipartite entanglement (based on the Peres-Horodecki criterion ) of three two-level atoms within three separated cavities prepared in coherent states in the presence of decoherence. The three qubits are initially entangled and driven by classical fields. We obtain an analytical solution of the present system using the superoperator method. We find that the genuine multipartite entanglement measured by an entanglement monotone based on the Peres-Horodecki criterion can stay zero for a finite time and revive partially later. This phenomenon is similar to the sudden death of entanglement of two qubits and can be controlled efficiently by the classical driving fields. The amount of purity, spin squeezing, and genuine multipartite entanglement decrease with the increase of mean photon number of cavity fields. Particularly, the purity and genuine multipartite entanglement could be simultaneously improved by the classical driving fields. In addition, there is steady state genuine multipartite entanglement which can also be adjusted by the classical driving fields.  相似文献   

8.
We investigate the transient spontaneous quantum synchronization between two qubits interacting with a common non-Markovian environment based on a collision model. We are mainly interested in the effect of non-Markovianity on the synchronization between two qubits. We find that the non-Markovianity always delay the anti-synchronization and decrease the parameter region where the qubits get anti-synchronized. Meanwhile, we define V to characterize the visibility of synchronization and show that there is an apparent link among V, entanglement and quantum mutual information whether in the Markovian or non-Markovian regimes when the environment is in the vacuum state. Moreover, with the increase of temperature, the parameter region of the emergence of anti-synchronization and the time to get anti-synchronized in the non-Markovian regime gradually approaches that in the Markovian regime. The high temperature decreases the parameter region of the emergence of anti-synchronization in both Markovian and non-Markovian regimes, and breaks the connection among V, entanglement and quantum mutual information.  相似文献   

9.
By making use of the dynamical algebraic method we investigate a quantum system consisting of superconducting qubits interacting with data buses, where the qubits are driven by time-dependent electromagnetic field and obtain an explicit expression of time evolution operator. Furthermore, we explore the entanglement dynamics and the influence of the time-dependent electromagnetic field and the initial state on the entanglement sudden death and birth for the system. It is shown that the entanglement between the qubit and bus as well as the entanglement sudden death and birth can be controlled by the time-dependent electromagnetic field.  相似文献   

10.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

11.
We study the manipulation of quantum entanglement by periodic external fields. As an entanglement measure we compute numerically the concurrence of two coupled superconducting qubits both driven by a dc + ac external control parameter. We show that when the driving term of the Hamiltonian commutes with the qubit–qubit interaction term, it is possible to create or destroy entanglement in a controlled way by tuning the system at or near multiphoton resonances. On the other hand, when the driving does not commute with the qubit–qubit interaction, the control and generation of entanglement induced by the driving field is more robust and extended in parameter space, beyond the multiphoton resonances.  相似文献   

12.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

13.
本文将两个二能级原子注入一个腔中,用共生纠缠的方法来度量两原子之间的纠缠并推出它们之间的量子失协,还给出了原子与环境之间的共生纠缠与量子失协的计算公式,讨论了原子自发衰变率的变化对量子纠缠及失协的影响,及不同的初始状态情况下,纠缠及失协随原子距离的演化情况。结果表明:原子自发衰变率减小,原子与环境之间的量子纠缠及失协增加;选择不同的初态,可以控制原子间出现纠缠死亡的现象或量子失协为零的状态。  相似文献   

14.
本文将两个二能级原子注入一个腔中,用共生纠缠的方法来度量两原子之间的纠缠并推出它们之间的量子失协,还给出了原子与环境之间的共生纠缠与量子失协的计算公式,讨论了原子自发衰变率的变化对量子纠缠及失协的影响,及不同的初始状态情况下,纠缠及失协随原子距离的演化情况.结果表明:原子自发衰变率减小,原子与环境之间的量子纠缠及失协增加;选择不同的初态,可以控制原子间出现纠缠死亡的现象或量子失协为零的状态.  相似文献   

15.
本文将两个二能级原子注入一个腔中,用共生纠缠的方法来度量两原子之间的纠缠并推出它们之间的量子失协,还给出了原子与环境之间的共生纠缠与量子失协的计算公式,讨论了原子自发衰变率的变化对量子纠缠及失协的影响,及不同的初始状态情况下,纠缠及失协随原子距离的演化情况。结果表明:原子自发衰变率减小,原子与环境之间的量子纠缠及失协增加;选择不同的初态,可以控制原子间出现纠缠死亡的现象或量子失协为零的状态。  相似文献   

16.
韩伟  张英杰  夏云杰 《中国物理 B》2013,22(1):10306-010306
Using the pseudomode method, we theoretically analyze the creation of quantum correlations between two two-level dipole-dipole interacting atoms coupled with a common structured reservoir with different coupling strengths. Considering certain classes of initial separable-mixed states, we demonstrate that the sudden birth of atomic entanglement as well as the generation of stationary quantum correlations occur. Our results also suggest a possible way to control the occurrence time of entanglement sudden birth and the stationary value of quantum correlations by modifying the initial conditions of states, the dipole-dipole interaction, and the relative coupling strength. These results are helpful for the experimental engineering of entanglement and quantum correlations.  相似文献   

17.
We show how a compound system of two entangled qubits in a non-product state can be described in a complete way by extracting entanglement into an internal constraint between the two qubits. By making use of a sphere model representation for the spin 1/2, we derive a geometric model for entanglement. We illustrate our approach on 2-qubit algorithms proposed by Deutsch, respectively Arvind. One of the advantages of the 2-qubit case is that it allows for a nice geometrical representation of entanglement, which contributes to a more intuitive grasp of what is going on in a 2-qubit quantum computation.  相似文献   

18.
By using reservoir theory, we investigate the evolution of an atom placed in photon superfluid and study the entanglement properties of two qubits interacting with photon superfluid. It is found that the atomic decay rate in photon superfluid changes periodically with position of the atom and the decay rate can be inhibited compared to that in usual electromagnetic environment without photon superfluid. It is also found that when two atoms are separately immersed in their own local photon-superfluid reservoir, the entanglement sudden death or birth occurs or not only depends on the initial state of the qubits. What is more, we find a possible case that the concurrence between two qubits can remain a constant value by choosing proper values of parameters of the system, which may provide a new way to preserve quantum entanglement.  相似文献   

19.
We revisit the protocols to create maximally entangled states between two Josephson junction (33) charge phase qubits coupled to a microwave field in a cavity as a quantum data bus. We analyze a novel mechanism of quantum decoherence due to the adiabatic entanglement between qubits and the data bus, the off-resonance microwave field. We show that even if the variable of the data bus can be adiabatically eliminated, the entanglement between the qubits and data bus remains and can decohere the superposition of two-particle state. Fortunately we can construct a decoherencefree subspace of two-dimension to against this adiabatic decoherence. To carry out the analytic study for this decoherence problem, we develop Frohlich transformation to re-derive the effective Hamiltonian of these systems, which is equivalent to that obtained from the adiabatic elimination approach.  相似文献   

20.
利用并发度和线性熵作为纠缠度量研究了两个驱动两能级原子和真空场相互作用系统中的纠缠动力学特性,分析了经典驱动场频率、原子和经典场的耦合系数以及参数α对并发度和线性熵的影响。结果发现通过调控经典驱动场能够提高两原子之间和两原子与场之间的纠缠,实现两原子之间纠缠突然死亡现象的操控,理论上提供了一种调控纠缠的方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号