首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper introduces a kind of multigrid finite element method for the coupled semilinear elliptic equations. Instead of the common way of directly solving the coupled semilinear elliptic problems on some fine spaces, the presented method transforms the solution of the coupled semilinear elliptic problem into a series of solutions of the corresponding decoupled linear boundary value problems on the sequence of multilevel finite element spaces and some coupled semilinear elliptic problems on a very low dimensional space. The decoupled linearized boundary value problems can be solved by some multigrid iterations efficiently. The optimal error estimate and optimal computational work are proved theoretically and demonstrated numerically. Moreover, the requirement of bounded second‐order derivatives of the nonlinear term in the existing multigrid method is reduced to a Lipschitz continuous condition in the proposed method.  相似文献   

2.
王然  张怀  康彤 《计算数学》2021,43(1):33-55
本文研究边界条件符合幂指数型非线性关系H × n = n × (|E × n|α-1E × n)(0 < α ≤ 1)的涡流方程.使用A-φ耦合有限元格式数值求解这类问题具有较高精度,但计算开销大. A-φ解耦有限元计算格式能够在每个时间步上分别求解矢量A和标量φ,以此降低计算规模,提高计算效率.我们证明了解耦格式中解的存在唯一性,并且给出了它的误差估计.最后给出的数值实验证明了本文所提供的解耦算法是稳定和有效的.  相似文献   

3.
1 引  言关于二阶双曲型方程的有限元解的收敛性问题 ,目前已经有不少结果 .Dupont[1 ] 给出了一类线性双曲方程 Galerkin解的 L2 误差估计 ,Baker[2 ] 对此作了改进 ,用的是一种所谓“非标准的能量方法”.这一方法为 Cowsar,Dupont,Wheeler[3] 所采用 ,分析了一类具有吸收边界条件的线性双曲方程的混合元格式的 L2收敛性 .对于非线性双曲型问题 ,袁益让 ,王宏[4,5] 等给出了标准有限元方法的 H1 与 L2 误差估计 .本文试图把 [3]的工作更进一步研究 ,我们考虑如下非线性双曲问题 :φ(x) utt= mi,j=1 xi(aij(x) p(x,u) u xj) + mi=1…  相似文献   

4.
We study numerical methods for a mixed Stokes/Darcy model in porous media applications. The global model is composed of two different submodels in a fluid region and a porous media region, coupled through a set of interface conditions. The weak formulation of the coupled model is of a saddle point type. The mixed finite element discretization applied to the saddle point problem leads to a coupled, indefinite, and nonsymmetric linear system of algebraic equations. We apply the preconditioned GMRES method to solve the discrete system and are particularly interested in efficient and effective decoupled preconditioning techniques. Several decoupled preconditioners are proposed. Theoretical analysis and numerical experiments show the effectiveness and efficiency of the preconditioners. Effects of physical parameters on the convergence performance are also investigated.  相似文献   

5.
In this paper, a modified characteristics finite element method for the time dependent Navier–Stokes/Darcy problem with the Beavers–Joseph–Saffman interface condition is presented. In this method, the Navier–Stokes/Darcy equation is decoupled into two equations, one is the Navier–Stokes equation, the other is the Darcy equation, and the Navier–Stokes equation is solved by the modified characteristics finite element method. The theory analysis shows that this method has a good convergence property. In order to show the effect of our method, some numerical results was presented. The numerical results show that this method is highly efficient. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
In this article, we propose and analyze a new decoupled characteristic stabilized finite element method for the time‐dependent Navier–Stokes/Darcy model. The key idea lies in combining the characteristic method with the stabilized finite element method to solve the decoupled model by using the lowest‐order conforming finite element space. In this method, the original model is divided into two parts: one is the nonstationary Navier–Stokes equation, and the other one is the Darcy equation. To deal with the difficulty caused by the trilinear term with nonzero boundary condition, we use the characteristic method. Furthermore, as the lowest‐order finite element pair do not satisfy LBB (Ladyzhen‐Skaya‐Brezzi‐Babuska) condition, we adopt the stabilized technique to overcome this flaw. The stability of the numerical method is first proved, and the optimal error estimates are established. Finally, extensive numerical results are provided to justify the theoretical analysis.  相似文献   

7.
A new decoupled finite element method is suggested to approximate time-dependent eddy current equations in a three-dimensional polyhedral domain. This method is based on solving a vector and a scalar from the splitting of the electric field by using edge and nodal finite elements. An optimal energy-norm error estimate in finite time is obtained by introducing a projection operator.  相似文献   

8.
Mixed and hybrid finite element methods for the resolution of a wide range of linear and nonlinear boundary value problems (linear elasticity, Stokes problem, Navier–Stokes equations, Boussinesq equations, etc.) have known a great development in the last few years. These methods allow simultaneous computation of the original variable and its gradient, both of them being equally accurate. Moreover, they have local conservation properties (conservation of the mass and the momentum) as in the finite volume methods.The purpose of this paper is to give a review on some mixed finite elements developed recently for the resolution of Stokes and Navier–Stokes equations, and the linear elasticity problem. Further developments for a quasi-Newtonian flow obeying the power law are presented.  相似文献   

9.
Mixed electrostatic and magnetostatic finite element formulations are considered. Solution methods for the resulting indefinite algebraic systems are investigated. Methods developed for the mixed formulations of the Stokes equations are modified in order to apply to the Maxwell equations: an efficient block preconditioner is proposed and a stabilised formulation is described. The different methods are applied to 2D and 3D examples.  相似文献   

10.
在流线迎风Petrov-Galerkin(SUPG)稳定化有限元数值格式的基础上,结合时间方向的变分离散,构造对流反应扩散方程的稳定化时间间断时空有限元格式.该类格式在工程上有一些数值模拟应用,但相关文献没有看到类似数值格式的理论证明.本文以Radau点为节点,构造时间方向的Lagrange插值多项式,证明了稳定化有限元解的稳定性,时间最大模、空间L2(Ω)-模误差估计.文中利用插值多项式和有限元方法相结合的技巧,解耦时空变量,去掉了时空网格的限制条件,提供了时间间断稳定化时空有限元方法的理论证明思路,克服了因时空变量统一导致的实际计算时的复杂性.  相似文献   

11.
We consider a numerical method for the Oldroyd‐B model of viscoelastic fluid flows by a combination of the weighted least‐squares (WLS) method and the discontinuous Galerkin (DG) finite element method. The constitutive equation is decoupled from the momentum and continuity equations, and the approximate solution is computed iteratively by solving the Stokes problem and a linearized constitutive equation using WLS and DG, respectively. An a priori error estimate for the WLS/DG method is derived and numerical results supporting the estimate are presented. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

12.
In this paper, we propose a two-grid finite element method for solving coupled partial differential equations, e.g., the Schrödinger-type equation. With this method, the solution of the coupled equations on a fine grid is reduced to the solution of coupled equations on a much coarser grid together with the solution of decoupled equations on the fine grid. It is shown, both theoretically and numerically, that the resulting solution still achieves asymptotically optimal accuracy.

  相似文献   


13.
In this paper, a fully coupled finite volume-finite element model for a deforming porous medium interacting with the flow of two immiscible pore fluids is presented. The basic equations describing the system are derived based on the averaging theory. Applying the standard Galerkin finite element method to solve this system of partial differential equations does not conserve mass locally. A non-conservative method may cause some accuracy and stability problems. The control volume based finite element technique that satisfies local mass conservation of the flow equations can be an appropriate alternative. Full coupling of control volume based finite element and the standard finite element techniques to solve the multiphase flow and geomechanical equilibrium equations is the main goal of this paper. The accuracy and efficiency of the method are verified by studying several examples for which analytical or numerical solutions are available. The effect of mesh orientation is investigated by simulating a benchmark water-flooding problem. A representative example is also presented to demonstrate the capability of the model to simulate the behavior in heterogeneous porous media.  相似文献   

14.
This paper presents several numerical tests on reaction–diffusion equations in the Turing space, affected by convective fields present in incompressible flows under the Schnakenberg reaction mechanism. The tests are performed in 2D on square unit, to which we impose an advective field from the solution of the problem of the flow in a cavity. The model developed consists of a decoupled system of equations of reaction–advection–diffusion, along with the Navier–Stokes equations of incompressible flow, which is solved simultaneously using the finite element method. The results show that the pattern generated by the concentrations of the reacting system varies both in time and space due to the effect exerted by the advective field.  相似文献   

15.
In this article, a full explicitly uncoupled variational multiscale (VMS) stabilization finite element method for solving the Darcy-Brinkman equations in double-diffusive convection is proposed. This method introduces three uncoupled VMS treatments for the velocity, the temperature, and the concentration as the postprocessing steps at each time step, respectively. We only need first to solve three full decoupled linear problems and then to solve three full decoupled postprocessing problems. This method is easy to implement because the existing codes can be used. The unconditional stability is proved and the a priori error estimates are derived. A series of numerical experiments are also given to confirm the theoretical analysis and to demonstrate the efficiency of the new method.  相似文献   

16.
Extrapolated two-step backward difference (BDF2) in time and finite element in space discretization for the unsteady penetrative convection model is analyzed. Penetrative convection model employs a nonlinear equation of state making the problem more nonlinear. Optimal order error estimates are derived for the semi-discrete finite element spatial discretization. Two time discretization schemes based on linear extrapolation are proposed and analyzed, namely a coupled and a decoupled scheme. In particular, we show that although both schemes are unconditionally nonlinearly stable, the decoupled scheme converges unconditionally whereas coupled scheme requires that the time step be sufficiently small for convergence. These time discretization schemes can be implemented efficiently in practice, saving computational memory. Numerical computations and numerical convergence checks are presented to demonstrate the efficiency and the accuracy of the schemes.  相似文献   

17.
In this paper, we introduce a mixed finite element method on a staggered mesh for the numerical solution of the steady state Navier-Stokes equations in which the two components of the velocity and the pressure are defined on three different meshes. This method is a conforming quadrilateral Q1 × Q1 - P0 element approximation for the Navier-Stokes equations. First-order error estimates are obtained for both the velocity and the pressure. Numerical examples are presented to illustrate the effectiveness of the proposed method.  相似文献   

18.
半导体器件瞬态模拟的对称正定混合元方法   总被引:3,自引:3,他引:0  
提出具有对称正定特性的混合元格式求解非稳态半导体器件瞬态模拟问题。提出一个最小二乘混合元方法、一个新的具有分裂和对称正定性质的混合元格式和一个解经典混合元方程的对称正定失窃工格式求解电场位势和电场强度方程;提出一个最小二乘混合元格式求解关于电子与空穴浓度的非稳态对流扩散方程,浓度函数和流函数被同时求解;采用标准的有限元方法求解热传导方程。建立了误差分析理论。  相似文献   

19.
In this paper, we study the finite element methods for distributed optimal control problems governed by the biharmonic operator. Motivated from reducing the regularity of solution space, we use the decoupled mixed element method which was used to approximate the solution of biharmonic equation to solve the fourth order optimal control problems. Two finite element schemes, i.e., Lagrange conforming element combined with full control discretization and the nonconforming Crouzeix-Raviart element combined with variational control discretization, are used to discretize the decoupled optimal control system. The corresponding a priori error estimates are derived under appropriate norms which are then verified by extensive numerical experiments.  相似文献   

20.
A gradient model for finite strain elastoplasticity coupled with damage   总被引:1,自引:0,他引:1  
This paper describes the formulation of an implicit gradient damage model for finite strain elastoplasticity problems including strain softening. The strain softening behavior is modeled through a variant of Lemaitre's damage evolution law. The resulting constitutive equations are intimately coupled with the finite element formulation, in contrast with standard local material models. A 3D finite element including enhanced strains is used with this material model and coupling peculiarities are fully described. The proposed formulation results in an element which possesses spatial position variables, nonlocal damage variables and also enhanced strain variables. Emphasis is put on the exact consistent linearization of the arising discretized equations.

A numerical set of examples comparing the results of local and the gradient formulations relative to the mesh size influence is presented and some examples comparing results from other authors are also presented, illustrating the capabilities of the present proposal.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号