首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
An extensive investigation of the basis-set effect on the predicted geometry of the redox pair [Ru(NH3)6]2+/3+ is presented. Basis sets where the core electrons have been replaced with a relativistic core potential as well as all-electron basis sets were tested. Best agreement with observations was obtained with the all-electron basis set MIDI augmented with a set of f-type polarization functions on the metal center. Other properties such as the vibration spectrum, the relative energy of the high-spin and low-spin states, and geometry changes upon oxidation/reduction of the central metal are discussed. The importance of electron correlation on the predicted geometry was estimated at the MP2, MP3, MP4(SDQ), CCSD, and CCSD(T) levels of theory. The MIDI(f) basis set is then used for other octahedral second-row transition-metal complexes and some other related complexes. The electronic spectrum of [Ru(NH3)6]2+ is also calculated using two different CI computational schemes. Surprisingly good agreement between the predicted electronic spectrum and the observed spectrum are obtained using one of the CI computational schemes. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
We applied the Infinite Basis (IB) set extrapolation and Double Hybrid Density Functional Theory (DHDF) to calculate the electron affinities, reaction barrier heights, proton affinities, non‐covalent interactions, atomization, ionization, and alkyl bond dissociation energies. We previously found that the mean unsigned error of the B2KPLYP‐IB calculation with the combination of cc‐pVTZ and cc‐pVQZ reach the chemical accuracy limit (~2 kcal/mol) where the largest deviation occurred in the electron affinity calculations and the weak interactions between noble gases and nonpolar molecules. Here, we investigated the basis set effect using the B2KPLYP‐IB extrapolation scheme that involves (1) the addition of extra tight d basis functions to the second row elements (i.e. cc‐pV(L+d)Z), (2) the addition of extra s, p, and d diffuse basis functions, and (3) a comparison between Dunning's Correlation Consistent and Jensen's Polarization Consistent (pc‐L) basis sets. We found that the addition of extra s and p diffuse basis functions formed the minimal augmented basis sets proposed by Truhlar. This addition permitted the B2KPLYP‐IB to reach the chemical accuracy limit with the combination of the double ζ and triple ζ basis sets. Adding extra s, p diffuse functions to the pc‐L series permitted only a small improvement. This small improvement is due to the fact that the pc‐L basis sets already contain a large number of functions for the p block elements. Taken together, the results suggest that this minimal augmented basis sets is useful for due to its accuracy and affordable computational cost.  相似文献   

3.
Modest-sized basis sets for the second-row transition metal atoms are developed for use in geometry optimization calculations. Our method is patterned after previous work on basis sets for first-row transition metal atoms. The basis sets are constructed from the minimal basis sets of Huzinaga and are augmented with a set of diffuse p and d functions. The exponents of these diffuse functions are chosen to minimize both the difference between the calculated and experimental equilibrium geometries and the total molecular energies for several second-row transition metal inorganic and organon etallic complexes. Slightly smaller basis sets, based on the same Huzinaga minimal sets but augmented with a set of diffuse s and p functions rather than diffuse p and d functions, are also presented. The performance of these basis sets is tested on a wide variety of second-row transition metal inorganic and organometallic complexes and is compared to pseudopotential basis sets incorporating effective core potentials.  相似文献   

4.
Tests have been performed on the quality of correlating functions generated from commonly used Gaussian basis sets, such as the 4-31G and MIDI-4 sets. The atoms tested were carbon, nitrogen, and oxygen. Self-consistent field and configuration interaction (CI) calculations were performed for the ground and lower excited states of neutral atoms as well as for positive and negative ions, using the original sets. Next, after adding (1) one d, and (2) two d and one f primitive Gaussian-type functions (GTFs) to the original sets, the CI calculations were repeated. In order to investigate the quality of the correlating orbitals generated from the GTF sets, parallel calculations to those for the GTF sets were carried out with an extended set of Slater-type functions. It was found that the excitation energies change in a stepwise manner as the basis sets changed from the original sets to the original set + 1d and the original set +2d1f. The improvements in excitation energies and ionization energies were almost independent of the original sets and were found to be strongly dependent on the augmented correlation functions. © 1996 by John Wiley & Sons, Inc.  相似文献   

5.
We investigate the optimization of Gaussian basis sets for relativistic calculations within the framework of the restricted Dirac-Hartree-Fock (DHF) method for atoms. We compare results for Rn of nonrelativistic and relativistic basis set optimizations with a finite nuclear-size. Optimization of separate sets for each spin-orbit component shows that the basis set demands for the lower j component are greater than for the higher j component. In particular, the p 1/2 set requires almost as many functions as the s 1/2 set. This implies that for the development of basis sets for heavy atoms, the symmetry type for which a given number of functions is selected should be based on j, not on l, as has been the case in most molecular calculations performed to date.  相似文献   

6.
This study demonstrates the use of uneven atomic basis sets for ab initio calculations of NMR shielding in the localized orbital/local origin (LORG) approach with norbornenone as the test case. We distinguish between locally dense sets (extended basis on target atom only) and locally saturated sets (extended bases on target atom and atoms in its first bonding sphere), using 6-311G ** and 6-31G sets to describe the high and low level of function sets. It is shown that the use of these uneven sets can simulate high basis set level calculations of shieldings for 1H and for all the 13C nuclei in this molecule and, hence, allows quite accurate ab initio calculations of shielding properties of these nuclei in large molecules using relatively modest computational facilities. The shielding of the double-bonded 17O nucleus is apparently sensitive to basis-set quality beyond the first bonding sphere. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
8.
We present a set of effective core potential (ECP) basis sets for rhodium atoms which are of reasonable size for use in electronic structure calculations. In these ECP basis sets, the Los Alamos ECP is used to simulate the effect of the core electrons while an optimized set of Gaussian functions, which includes polarization and diffuse functions, is used to describe the valence electrons. These basis sets were optimized to reproduce the ionization energy and electron affinity of atomic rhodium. They were also tested by computing the electronic ground state geometry and harmonic frequencies of [Rh(CO)2μ‐Cl]2, Rh(CO)2ClPy, and RhCO (neutral and its positive, and negative ions) as well as the enthalpy of the reaction of [Rh(CO)2μ‐Cl]2 with pyridine (Py) to give Rh(CO)2ClPy, at different levels of theory. Good agreement with experimental values was obtained. Although the number of basis functions used in our ECP basis sets is smaller than those of other ECP basis sets of comparable quality, we show that the newly developed ECP basis sets provide the flexibility and precision required to reproduce a wide range of chemical and physical properties of rhodium compounds. Therefore, we recommend the use of these compact yet accurate ECP basis sets for electronic structure calculations on molecules involving rhodium atoms. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
We propose an extension of the basis sets proposed by Ahlrichs and coworkers at Karlsruhe (these basis sets are designated as the second-generation default or “def2” basis sets in the Turbomole program). The Karlsruhe basis sets are very appealing because they constitute balanced and economical basis sets of graded quality from partially polarized double zeta to heavily polarized quadruple zeta for all elements up to radon (Z = 86). The extension consists of adding a minimal set of diffuse functions to a subset of the elements. This yields basis sets labeled minimally augmented or with “ma” as a prefix. We find that diffuse functions are not quite as important for the def2 basis sets as they are for Pople basis sets, but they are still necessary for good results on barrier heights and electron affinities. We provide assessments and validations of this extension for a variety of data sets and representative cases. We recommend the new ma-TZVP basis set for general-purpose applications of density functional theory.  相似文献   

10.
We propose a new type of Gaussian basis sets for use in calculations of electron scattering by molecules. Instead of locating the basis-set functions on the atomic centers of the target molecule, we place primitive s-type Gaussians at the positions of a cubic lattice with a regular grid. The grid and the Gaussian exponent are fixed so as to give the best representation of the plane-wave function. Plane-wave functions and Green functions obtained by means of the cubic-grid basis set are tested graphically against exact functions and functions expressed by means of a conventional Gaussian basis set. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
Dipole moments and static dipole polarizabilities have been calculated for a number of small molecules using the linear combination of Gaussian-type orbitals–local spin density method. The effect of augmenting standard orbital basis sets with polarization functions has been investigated. A set of optimum ζd, for use in calculating polarizabilities, has been derived for the first-row atoms C, N, O, and F. The results of this optimized doubly polarized double-zeta basis set compare well with results obtained using a double-zeta basis set augmented by four even-tempered ζd polarization functions. The results of the optimized basis set, and a basis set augmented with only a single ζd polarization function derived from it, compare very favorably with those obtained from Møller–Plesset perturbation theory and with experimental data. They show a marked improvement on results obtained using standard Hartree–Fock self-consistent-field molecular orbital methods where no treatment of electron-correlation is included.  相似文献   

12.
Fifteen C36 isomers were examined to determine the influence that the quality of basis sets has on the geometry parameters, the relative stability and HOMO–LUMO energy gaps of fullerene isomers calculated with density functional theory. It is worthwhile to note that the geometry parameters of all C36 isomers are insensitive to basis sets. On the other hand, one set of d-type polarization functions plays an important role in evaluating relative stability and HOMO–LUMO energy gaps, while diffuse functions are not effective. To obtain reliable energies, at least a double-zeta plus polarization basis set is required, and a triple-zeta plus polarization basis set is suggested to lead to accurate energies at a reasonable computational cost.  相似文献   

13.
Calculations of molecular polarizabilities require basis sets capable of accurately describing the responses of the electrons to an external perturbation. Unfortunately, basis sets that yield suitable quantitative results have traditionally been all-electron sets with large numbers of primitives, making their use computationally intractable even for moderately sized systems. We present a systematic augmentation of the effective core potential basis set of Stevens et al. [J Chem Phys 81, 12 (1984), Can J Chem 70, 612 (1992)] for 39 main group elements based on the procedure used to construct diffuse and polarization functions in the well-known Sadlej basis sets [Collec Czech Chem Comm 53, 1995 (1988)]. Representative calculations have been performed and we have shown that results to within 1% of all-electron calculations using the Sadlej basis set can be obtained for <1-35% of the computational cost using this new basis set.  相似文献   

14.
We review “Hilbert space basis-set reduction” (BSR) as an approach to reduce the computational effort of accurate correlation calculations for large basis sets. We partition the single-particle basis into a small “internal” and a large “external” set. We use the MRCI method for the calculation for that part of configuration space in which only internal orbitals are occupied and perturbatively correct for the remaining configurations using a method similar to Shavitt's Bk method. The present implementation approximates the MRCI result for the unpartitioned basis set, with a significantly reduced computational effort. To demonstrate the viability of the method, we present results for selected states of small molecules (Be2, CH2, O3). For the examples investigated, we find that relative energy differences can be reproduced to an accuracy of approximately 1 kcal/mol with a significant computational saving. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Theoretical methods based on density-functional theory with Gaussian, plane waves, and numerical basis sets were employed to evaluate the exchange coupling constants in transition-metal complexes. In the case of the numerical basis set, the effect of different computational parameters was tested. We analyzed whether and how the use of pseudopotentials affects the calculation of the exchange coupling constants. For the three different basis sets, a comparison of the exchange coupling constants and spin distributions shows that both the plane-wave and the numerical basis set approaches are accurate and reliable alternatives to the more established Gaussian basis functions.  相似文献   

16.
A combined computational (MO ab initio) and structural-statistical study of molecules containing the O? C? N moiety is presented. Aminomethanol, the simplest member of this series, was computed using GAUSSIAN-82 with the 3-21G and 6-31G* basis sets and with complete geometry optimization, as well as with MP3//6-31G*. A set of carefully selected molecules containing the O? C? N unit was retrieved from the Cambridge Structural Database (CSD), and its structural parameters were analyzed according to an established procedure. Comparison between experimental and computational data was thus made possible. Results are consistent with the co-existence of two unequal anomeric effects in this system: a strong nN-σ*C? O anomeric interaction, and a weak nπO-σ*C? N one. The ability of the two basis sets to reproduce the energies and structural characteristics of the stereoelectronic effects is assessed, including the significance of using polarization functions and the inclusion of correlation energy.  相似文献   

17.
Several classes of functions related to the Gaussian have been used with success as basis sets for the representation of atomic and molecular orbitals. We have compared the representation of a hydrogen 1s orbital by a sum of Gaussian lobe functions with its expansion in eigenfunctions of the three-dimensional isotropic harmonic oscillator. The lobe functions are shown to achieve better expectation values of the energy, with fewer terms. The lobe functions have the further computational advantage of not containing high powers of the radius. It is concluded that the lobe functions are a superior basis set for use in calculations of the electronic structure of atoms and molecules.  相似文献   

18.
As an important lineage of metal oxides, alkaline earth oxides have attracted significant interest due to their unique properties and potential applications in material science and industry. In this article, we present the first ab initio (HF, MP2, and CCSD(T)) and density functional theory (TPSSh functional) investigation on the optical properties such as polarizabilities per atom (PPA), differential polarizability per unit (DPPU), and anisotropies of (BeO)n [n = 2–9] nanoclusters as an illustrative example of alkaline earth oxides nanostructures. Basis set augmentation effects on the studied properties of BeO nanoclusters have been explored by using basis sets of triple‐zeta quality starting from 6‐311G with increasing completeness of the diffuse and polarization functions to the 6‐311+G(3df) basis. Checking carefully the basis set effects, it is shown that the 6‐311+G(3d) basis set provides the best compromise between the accuracy and computational cost. We found a decreasing trend for PPA values of BeO nanoclusters using all considered methods, indicating the strong electron delocalization with increasing cluster size. Moreover, in accordance with the energetic analysis of stability of BeO nanoclusters, the values of PPA show that the (BeO)4 and (BeO)6 clusters are the most stable magic numbers compared to the neighbors, satisfying the minimum polarizability principle. The computed values of DPPU demonstrate a strong binding effect in BeO nanoclusters. Taking into account the electron correlation correction (ECC), it is observed that the variations of ECC on dipole polarizabilities are almost smooth for clusters under study. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
The hydrated α-cyclodextrin (α-CD) clusters resulting from the following process: nα-CD + n(H2O)6 → α-CDn · 6nH2O, with n = 1, 2, 3, 4, have been investigated using semiempirical (PM3), ab initio Hartree-Fock and Density Functional Theory (BLYP functional) levels of theory. The largest structure containing 576 atoms and 5,760 contracted basis functions (6-31G(d,p) basis set) poses as a considerable hard task for quantum chemical calculations. As the number of basis function increases rapidly with the cluster size, an alternative procedure to make the calculations feasible is certainly welcome, in order to perform BLYP calculations with an adequate basis set. Through the aid of a computer program that we developed, it became of practical use the selection of atom by atom basis sets, using the common chemical sense, enabling quantum mechanical calculations to be performed for very large molecular interacting systems (inclusion complexes), at an affordable computational cost. In this article we show how an appropriate selection of basis functions, leaving the CHn groups with a minimal basis set and the oxygen atoms (and OH groups) with a better quality basis set, lower considerably the computational cost with no significant loss in the calculated interaction energies. A regular pattern is observed for α-CD hydrated monomer, dimer, trimer and tetramer, therefore adding support to the use of this procedure when studying larger hydrogen bonded clusters where electron correlation effects are important. We show that the procedure reported here enables DFT calculations for hydrated cyclodextrin using basis set up to the 6-311++G(3df,3pd) triple zeta quality .  相似文献   

20.
Phosphorus nitride (PN) is the simplest molecule formed solely by phosphorus and nitrogen. It represents an interesting model for materials, where phosphorus is directly attached to nitrogen. Nevertheless, both theoretical and experimental studies often provide an incomplete picture on the structural, electronic, and spectral properties of PN. Theoretical predictions often suffer from insufficient level of theory, incomplete basis set, or from neglecting several effects, for example, zero-point vibrational correction (ZPVC). Therefore, we performed an extensive benchmark study on structural, electronic, and spectral properties of PN at the Hartree-Fock, density functional theory (DFT), or even the coupled-cluster levels. We paid special attention to the basis set effect. We tested three variants of Dunning's aug-cc-pVXZ basis sets with the size from double-ζ to sextuple-ζ, as well as Jensen's aug-pc-n, aug-pcJ-n, and aug-pcSseg-n basis sets, where n = 1-4. Obtained energetics, PN distance, dipole moment, vibrational frequencies, and nuclear magnetic resonance (NMR) parameters were extrapolated to the complete basis set limit (CBS) using three- or two-parameter formulas. The 31P NMR shieldings estimated with the aug-cc-pVXZ and aug-cc-pV(X + d)Z basis sets strongly depend on the basis set size providing scattered convergence patterns toward CBS. The Hartree-Fock self-consistent field (HF-SCF) NMR parameters evinced similar behavior as the coupled-cluster data. The only smooth convergence was achieved using the aug-cc-pCVXZ basis sets that include core-valence effects. The KT3 functional underestimated the phosphorus CBS shieldings by about 12 ppm compared to coupled cluster with singles and doubles (CCSD) (T). Nevertheless, KT3 unambiguously surpasses the HF-SCF and CCSD levels that provide 31P shieldings that are lower by about 150 ppm and 24 ppm compared to CCSD(T). The convergence of nitrogen shieldings was regular for all basis set hierarchies and all theoretical methods. Relativistic and vibrational effects on selected properties were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号