首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We investigate the localization of a five-dimensional vector field on a pure geometrical thick brane. By introducing two types of interactions between the vector field and the background scalar field, we obtain a typical volcano potential for the first type of coupling and a Poschl-Teller potential for the second one. These two types of couplings guarantee that the vector zero mode can be localized on the pure geometrical thick brane under certain conditions.  相似文献   

2.
In this work we examine a five-dimensional brane-world model with brane structure driven by a real scalar field. From the deformation of a kink-like defect we find a new class of brane solutions containing internal structures which have implications for the way the background space-time is constructed and the way its curvature behaves. Initially, for spin 0 scalar field, we find a zero mode which can be localized on the deformed brane. However, this result can change by the gravitational interaction with the brane internal structure. Analyzing the massive modes of the scalar field, using two different methods, we find resonance structures similar to those found in the study of gravity localization. The main objective here is to observe the contributions of the deformation procedure to the resonances and to the well known field localization methods.  相似文献   

3.
In this work we investigate the issue of fermion localization and resonances in (4,1)-deformed branes constructed with one scalar field coupled with gravity. Such models provide us branes with internal structures that turns the gravitational interaction more effective for fermions aside the brane, increasing their lifetime. The coupling between the scalar field and spinors is a necessary condition for fermions to be localized on such branes. After performing a chiral decomposition of the five-dimensional spinor we found resonances with both chiralities. The correspondence between the spectra for left and right chirality is guaranteed and Dirac fermions are realized on the brane.  相似文献   

4.
In this work we study two types of five-dimensional braneworld models given by sine-Gordon potentials. In both scenarios, the thick brane is generated by a real scalar field coupled to gravity. We focus our investigation on the localization of graviton field and the behaviour of the massive spectrum. In particular, we analyse the localization of massive modes by means of a relative probability method in a Quantum Mechanics context. Initially, considering a scalar field sine-Gordon potential, we find a localized state to the graviton at zero mode. However, when we consider a double sine-Gordon potential, the brane structure is changed allowing the existence of massive resonant states. The new results show how the existence of an internal structure can aid in the emergence of massive resonant modes on the brane.  相似文献   

5.
In this paper, we explore the localization condition of Kalb-Ramond(KR) tensorial gauge field on a thick de Sitter(dS) brane. Following the localization mechanism in the work by Chumbes et al(2012 Phys. Rev. D 85 085003), we analyze the localization of KR tensorial gauge field on a non-flat three-brane. We propose three kinds of coupling methods and two of them support the localization of zero mode. In addition, there exist resonant Kaluza-Klein modes on the thick dS brane. The effects of three parameters on the localization and the resonant mode for the KR field are also discussed.  相似文献   

6.
In this work, we study the localization of the vector gauge field in two five-dimensional braneworlds generated by scalar fields coupled to gravity. The sine–Gordon like potentials are employed to produce different thick brane setups. A zero mode localized is obtained, and we show the existence of reverberations with the wave solutions indicating a quasi-localized massive mode. More interesting results are achieved when we propose a double sine–Gordon potential to the scalar field. The resulting thick brane shows a more detailed topology with the presence of an internal structure composed by two kinks. The massive spectrum of the gauge field is revalued on this scenario revealing the existence of various resonant modes. Furthermore, we compute the corrections to Coulomb law coming from these massive KK vector modes in these thick scenarios, which is concluded that the dilaton parameter regulates these corrections.  相似文献   

7.
In this paper, we study the scalar fields evolving on a FRW brane embedded in a five-dimensional de Sitter bulk. The scale function and the warp factor, solutions of the Einstein equations, are employed in the five-dimensional Gordon equation describing the massive scalar field, whose wave function depends on the cosmic time and on the extra-dimension. We point out the existence of bounded states and find a minimum value of the effective four-dimensional mass. For the test (scalar) field envelope along the extra-dimension, we derive the corresponding Schrödinger-like equation which is formally that for the Pöschl-Teller potential. Accordingly, we have obtained the quantization law for the mass parameter of the tested scalar field.  相似文献   

8.
We investigate the fermionic resonances for both chiralities in five-dimensional Eddington-inspired BornInfeld(EiBI)theory.In order to localize fermion on the brane,it needs to be considered the Yukawa coupling between the fermion and the background scalar field.In our models,since the background scalar field has kink,double kink,or anti-kink solution,the system has rich resonant Kaluza-Klein(KK)modes structure.The massive KK fermionic modes feel a volcano potential,which result in a fermionic zero mode and a set of continuous massive KK modes.The inner structure of the branes and a free parameter in background scalar field influence the resonant behaviors of the massive KK fermions.  相似文献   

9.
We investigate the possibility of localizing various matter fields on the double walls. For spin 0 scalar field, massless zero mode can be normalized on the double walls. However, for spin 1 vector field, the zero mode is not localized on the double walls. In the paper [C.A.S. Almeida, M.M. Ferreira Jr., A.R. Gomes, R. Casana, arXiv:0901.3543 [hep-th]], the authors investigated fermion localization on a Bloch brane, especially, they found fermion resonances on the Bloch brane for both chiralities and related their appearance to branes with internal structure. Inspired by their work, for spin 1/2 spinor field, we focus our attention mainly on the fermion resonances, and also found fermion resonances for both left-handed fermions and right-handed ones on the double walls, which further supports the arguments presented in the paper [C.A.S. Almeida, M.M. Ferreira Jr., A.R. Gomes, R. Casana, arXiv:0901.3543 [hep-th]].  相似文献   

10.
We investigate the possibility of localizing various matter fields on a bent AdS4 (dS4) thick brane in AdS5. For spin 0 scalar field, we find a massless zero mode and an excited state which can be localized on the bent brane. For spin 1 vector field, there is only a massless zero mode on the bent brane. For spin 1/2 fermion field, it is shown that, in the case of no Yukawa coupling of scalar-fermion, there is no existence of localized massless zero mode for both left and right chiral fermions. In order to localize massless fermions, some kind of Yukawa coupling must be included. We study two types of Yukawa couplings as examples. Localization property of chiral fermions is related to the parameters of the brane model, the Yukawa coupling constant and the cosmological constant of the 4-dimensional space–time.  相似文献   

11.
In this paper, we utilise the Chumbes-Holf da Silva-Hott (CHH) mechanism to investigate the issue of gauge field localization on a deformed brane constructed with one scalar field, which can be coupled to gravity minimally or non-minimally. The study of deformed defects is important because they contain internal structures which may have implications in braneworld models. With the CHH mechanism, we find that the massless zero mode of gauge field, in the case of minimal or non-minimal coupling is localized on the brane. Moreover, in the case of non-minimal coupling, it is shown that, when the non-minimal coupling constant is larger than its critical value, then the zero mode is localized on each sub brane.  相似文献   

12.
Braneworld models may yield interesting effects ranging from high-energy physics to cosmology, or even some low-energy physics. Their mode structure modifies standard results in these physical realms that can be tested and used, for example, to set bounds on the models parameters. Now, to define braneworld deviations from standard 4D physics, a notion of matter and gravity localization on the brane is crucial. In this work we investigate the localization of universal massive scalar fields in a de Sitter thick tachyonic braneworld generated by gravity coupled to a tachyonic bulk scalar field. This braneworld possesses a 4D de Sitter induced metric and is asymptotically flat despite the presence of a negative bulk cosmological constant, a novel and interesting peculiarity that contrasts with previously known models. It turns out that universal scalar fields can be localized in this expanding braneworld if their bulk mass obeys an upper bound, otherwise the scalar fields delocalize: The dynamics of the scalar field is governed by a Schrödinger equation with an analog quantum mechanical potential of modified Pöschl–Teller type. This potential depends on the bulk curvature of the braneworld system as well as on the value of the bulk scalar field mass. For masses satisfying a certain upper bound, the potential displays a negative minimum and possesses a single massless bound state separated from the Kaluza–Klein (KK) massive modes by a mass gap defined by the Hubble (expansion scale) parameter of the 3-brane. As the bulk scalar field mass increases, the minimum of the quantum mechanical potential approaches a null value and, when the bulk mass reaches certain upper bound, it becomes positive (eventually transforming into a potential barrier), leading to delocalization of the bulk scalar field from the brane. We present analytical expressions for the general solution of the Schrödinger equation. Thus, the KK massive modes are given in terms of general Heun functions as well as the expression for the massless zero mode, giving rise to a new application of these special functions.  相似文献   

13.
《Nuclear Physics B》1995,434(3):709-735
We find cosmological black hole solutions for spacetimes of arbitrary dimension (greater than three) that are asymptotically de Sitter, and we show that these solutions can be extended to give multi-black hole solutions. We investigate the motion of a charged massive test particle in a five-dimensional extreme Reissner-Nordström de Sitter background. Furthermore we obtain Killing spinors for Reissner-Nordström de Sitter spacetimes. We also find five-dimensional cosmological black hole solutions in an asymptotically anti de Sitter spacetime and we show that these solutions are supersymmetric in the sense that they admit a supercovariantly constant spinor.  相似文献   

14.
We propose a new approach towards the understanding of confinement. Starting from an anisotropic five-dimensional pure gauge theory, we approach a second order phase transition where the system reduces dimensionally. Dimensional reduction is realized via localization of the gauge and scalar degrees of freedom on four-dimensional branes. The gauge coupling deriving from the brane Wilson loop observable runs like an asymptotically free coupling at short distance, while it exhibits clear signs of string formation at long distance. The regularization used is the lattice. We take the continuum limit by keeping the ratio of the lattice spacing in the brane over the lattice spacing along the extra dimension constant and smaller than one.  相似文献   

15.
The model of a domain wall (“thick” brane) in noncompact five-dimensional spacetime is considered with geometries of AdS 5 type generated by self-interacting scalar matter. The scalar matter is composed of two fields with O(2) symmetric self interaction. One of them is mixed with gravity scalar modes and plays role of the brane formation mode (due to a kink background) and another one is of a Higgs-field type. The interplay between soft breaking of O(2) symmetry and gravity influence is thoroughly investigated around the critical point of spontaneous t symmetry breaking when the v.e.v. of the Higgs-type scalar field occurs. The possibility of (quasi)localization of scalar modes on such thick branes is examined.  相似文献   

16.
This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios.  相似文献   

17.
We show that the Dirac equation is separable in the circularly symmetric metric in three dimensions and when the background spacetime is de Sitter we find exact solutions to the radial equations. Using these results we show that the de Sitter horizon has a cross section equal to zero for the massless Dirac field, as in the case of the scalar field. Also, using the improved brick wall model we calculate the fermionic entropy associated with the de Sitter horizon and we compare it with some results previously published.  相似文献   

18.
Stationary thick brane solutions supported by two spinor fields are considered. Two spinor fields are used here to exclude the off-diagonal components of the energy-momentum tensor of the spinor fields. The trapping of a test scalar field on the brane is also considered.  相似文献   

19.
The quantization of the massless minimally coupled (mmc) scalar field in de Sitter spacetime is known to be a non-trivial problem due to the appearance of strong infrared (IR) effects. In particular, the scale-invariance of the CMB power-spectrum – certainly one of the most successful predictions of modern cosmology – is widely believed to be inconsistent with a de Sitter invariant mmc two-point function. Using a Cesaro-summability technique to properly define an otherwise divergent Fourier transform, we show in this Letter that de Sitter symmetry breaking is not a necessary consequence of the scale-invariant fluctuation spectrum. We also generalize our result to the tachyonic scalar fields, i.e. the discrete series of representations of the de Sitter group, that suffer from similar strong IR effects.  相似文献   

20.
Within our thick brane approach previously used to obtain the cosmological evolution equations on a thick brane embedded in a five-dimensional Schwarzschild Anti-de Sitter spacetime it is explicitly shown that the consistency of these equations with the energy conservation equation requires that, in general, the thickness of the brane evolves in time. This varying brane thickness entails the possibility that both Newton’s gravitational constant G and the effective cosmological constant Λ4 are time dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号