首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HPTLC silica gel plates without and with fluorescence indicator F254 in combination with n-hexane–ethyl acetate–formic acid (20:19:1, v/v/v) as a developing solvent were explored for the HPTLC–densitometric and HPTLC–MS/(MSn) analyses of flavonoids. Pre-development of the plates with chloroform–methanol (1:1, v/v) was needed for reliable HPTLC–densitometric analyses of flavonoid aglycones in the whole RF range, while 2-step pre-development (1st methanol–formic acid (10:1, v/v), 2nd methanol), that decreased background signals of formic acid adducts, was required for HPTLC–MS analyses. Optimization with conditioning of the adsorbent layer with water before development and saturation of the twin trough chamber resulted in required decrease of the RF values of studied flavonoids (flavone, apigenin, luteolin, chrysin, quercetin dihydrate, myricetin, kaempferide, kaempferol, naringenin, pinocembrin).

Detection was performed based on fluorescence quenching (on the plates with F254), natural fluorescence and after post-chromatographic derivatization with natural product reagent without or with further enhancement and stabilization of fluorescent zones with polyethylene glycol (PEG 400 or PEG 4000) or paraffin–n-hexane reagents. For all three reagents, drying temperature and time passed after drying influenced the intensity, which was increasing the first 20?min, and the stability (less than 2?h for PEGs and at least 24?h for paraffin–n-hexane) of the standards’ zones.

Optimal wavelengths for densitometric evaluation were selected based on in-situ absorption spectra scanned before and after derivatization and after stabilization. The developed method was tested via analyses of propolis, roasted coffee, rose hip, hibiscus, rosemary and sage crude extracts. To further increase the reliability of the obtained densitometric results HPTLC–MS/(MSn) analyses of all crude extracts were performed. Several phenolic and non-phenolic compounds were tentatively identified.

Some possible interferences with phenolic acids (chlorogenic acid, rosmarinic acid, protocatechuic acid, gallic acid, syringic acid, ellagic acid, trans-cinnamic acid, o-coumaric acid, m-coumaric acid, p-coumaric acid, caffeic acid, ferulic acid, sinapic acid) that are often present in the extracts together with flavonoids were also examined.  相似文献   

2.
This study focuses on the characterization and classification of 42 medicinal plants extracts according to their antioxidant activity. Principal component analysis (PCA), cluster analysis (CA) and the combination of PCA with linear discriminant analysis (PCA-LDA) were used as multivariate exploratory techniques for chromatographic data analysis. For the separation of the compounds a mobile phase containing ethyl acetate: toluene: formic acid: water (30:1.5:4:3 v/v/v/v) and different HPTLC plates (Silica gel 60 and HPTLC Silica gel 60?F254) were used. The chromatographic plates were evaluated using the images obtained after spraying the plates with 2-aminoethyldiphenylborate solution (NTS, 0.2% in ethanol) and also after their reaction with 2, 2-diphenyl-1-picrylhydrazyl solution (DPPH?) (0.2% in ethanol). The score projection on the plane defined by first two components (PC1 and PC2) revealed two large groups of the investigated samples depicted according to their antioxidant capacity. A better classification of samples according to their antioxidant capacity was obtained using the CA and PCA-LDA methodology in all cases. The excellent results obtained in this study concerning the classification of medicinal plants according to their antioxidant capacity using the PCA-LDA methodology applied to TLC chromatograms might lead to a new paradigm in the field of medicinal plant holistic evaluation.  相似文献   

3.
A simple, precise, and rapid high‐performance thin‐layer chromatographic (HPTLC) method for the simultaneous quantification of pharmacologically important naphthoquinone shikonin ( 1 ) together with its derivatives acetylshikonin ( 2 ), and β‐acetoxyisovalerylshikonin ( 3 ) in four species of genus Arnebia (A. euchroma, A. guttata, A. benthamii, and A. hispidissima) from the Indian subcontinent has been developed. In addition, the effect of solvents with varying polarity (hexane, chloroform, ethyl acetate, and methanol) for the extraction of these compounds was studied. HPTLC was performed on precoated RP‐18 F254S TLC plates. For achieving good separation, mobile phase consisting of ACN/methanol/5% formic acid in water (40:02:08 v/v/v) was used. The densitometric determination of shikonin derivatives was carried out at 520 nm in reflection/absorption mode. The method was validated in terms of linearity, accuracy, precision, robustness, and specificity. The calibration curves were linear in the range of 100–600 ng for shikonin and acetylshikonin, and 100–1800 ng for β‐acetoxyisovalerylshikonin. Lower LOD obtained for compounds 1 – 3 were 18, 15, and 12 ng, respectively, while the LOQ obtained were 60, 45, and 40 ng, respectively.  相似文献   

4.
Accurate, selective, sensitive and precise HPTLC‐densitometric and RP‐HPLC methods were developed and validated for determination of bumadizone calcium semi‐hydrate in the presence of its alkaline‐induced degradation product and in pharmaceutical formulation. Method A uses HPTLC‐densitometry, depending on separation and quantitation of bumadizone and its alkaline‐induced degradation product on TLC silica gel 60 F254 plates, using hexane–ethyl acetate–glacial acetic acid (8:2:0.2, v/v/v) as a mobile phase followed by densitometric measurement of the bands at 240 nm. Method B comprises RP‐HPLC separation of bumadizone and its alkaline‐induced degradation product using a mobile phase consisting of methanol–water–acetonitrile (20:30:50, v/v/v) on a Phenomenex C18 column at a flow‐rate of 2 mL/min and UV detection at 235 nm. The proposed methods were successfully applied to the analysis of bumadizone either in bulk powder or in pharmaceutical formulation without interference from other dosage form additives, and the results were statistically compared with the established method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
《Analytical letters》2012,45(9):1641-1653
Abstract

High performance thin layer chromatographic (HPTLC) and high performance liquid chromatographic (HPLC) methods were developed for the simultaneous determination of Tinidazole and Furazolidone in suspension.

In the HPTLC method the separation of Tinidazole and Furazolidone was carried out on silica gel 60F254 HPTLC glass plate using chloroform:methanol:ammonia (9:1:0.1 v/v) as a mobile phase. Rf values obtained were 0.63 and 0.79 for Furazolidone and Tinidazole respectively. Densitometric evaluation was done at 335 nm. Linearity was obtained within the concentration range 10–50 μg/ml and 3.5–17.5 μg/ml for Tinidazole and Furazolidone respectively.

The second method is based on high performance liquid chromatography on a reversed phase column (μ Bondapak C18) using a mobile phase comprised of water: acetonitrile: triethylamine (80:20:0.1 v/v) adjusted to pH = 3.0 with dil. phosphoric acid. Retention times were 5.24 and 7.82 min for Tinidazole and Furazolidone respectively at a flow rate of 1.5 ml/min. Detection was done at 335 nm. Linearity was obtained within the concentration range 30–180 μg/ml and 10.5–63 μg/ml for Tinidazole and Furazolidone resp.  相似文献   

6.
Two chromatographic methods, high-performance TLC (HPTLC) and HPLC, were developed and used for separation and quantitative determination of chlorogenic acid in green coffee bean extracts. For HPTLC silica gel Kieselgel 60 F 254 plates with ethyl acetate/dichlormethane/formic acid/acetic acid/water (100:25:10:10:11, v/v/v/v/v) as mobile phase were used. Densitometric determination of chlorogenic acid by HPTLC was performed at 330 nm. A gradient RP HPLC method was carried out at 330 nm. All necessary validation tests for both methods were developed for their comparison. There were no statistically significant differences between HPLC and HPTLC for quantitative determination of chlorogenic acid according to the test of equality of the means.  相似文献   

7.
An instrumental planar chromatographic (HPTLC) method for quantification of carbamazepine in human serum was developed using liquid‐liquid extraction with dichloromethane, fluorescence activation with perchloric acid 60%/ethanol/water (1:1:1, v/v) and fluorescence detection. Planar chromatographic separation was performed on precoated silica gel F254 HPTLC plates using a mixture of ethyl acetate/toluene/methanol/acetic acid glacial (5:4:0.5:0.5, v/v) as mobile phase. Densitometric detection was done at 366 nm. The method was validated for linearity, precision and accuracy. Linear calibration curves in the range of 3 and 20 ng/μL showed correlation coefficient of 0.998. The intra‐assay and inter‐assay precision, expressed as the RSD, were in the range of 0.41–1.24% (n = 3) and 2.17–3.17% (n = 9), respectively. The LOD was 0.19 ng, and the LOQ was 0.57 ng. Accuracy, calculated as percentage recovery, was between 98.98 and 101.96%, with a RSD not higher than 1.52%. The method was selective for the active principle tested. In conclusion, the method is useful for quantitative determination of carbamazepine in human serum.  相似文献   

8.
A simple, precise and accurate high-performance thin-layer chromatographic method has been established for the determination of rutin in the whole plant powder of Amaranthus spinosus Linn. Rutin has been reported to have anti-diabetic, anti-thrombotic, anti-inflammatory and anti-carcinogenic activity. A methanol extract of the whole plant powder was used for the experimental work. The concentration of rutin in the whole plant powder was found to be 0.15%. Separation was performed on silica gel 60 F254 HPTLC plates with ethyl acetate:formic acid:methanol:distilled water in the proportion 10:0.9:1.1:1.7 (v/v), as mobile phase. The determination was carried out using the densitometric absorbance mode at 363 nm. Rutin response was linear over the range 10–60 μg mL?1. The HPTLC method was evaluated in terms of sensitivity, accuracy, precision and reproducibility.  相似文献   

9.
Accurate, sensitive, and precise high performance thin layer chromatographic (HPTLC) methods were developed and validated for the determination of sumatriptan and zolmitriptan in presence of their degradation products. Sumatriptan was separated from its degradation products and analyzed on TLC silica gel 60 F254 plates using chloroform–ethyl acetate–methanol–ammonia (4:3:3:0.1, v/v) as a developing system followed by densitometric measurement of the bands at 228 nm. Zolmitriptan was determined using chloroform–ethyl acetate–methanol–ammonia (3:3:3:1, v/v) as a developing system followed by densitometric measurement at 222 nm. The methods were validated over a range of 0.5–4 μg/spot for sumatriptan and 0.5–3 μg/spot for zolmitriptan. The proposed methods were successfully applied for the determination of the studied drugs in bulk powder and in their pharmaceutical formulations.  相似文献   

10.
The current paper reports the development and validation of stability‐indicating HPLC and HPTLC methods for the separation and quantification of main impurity and degradation product of Carbimazole. The structures of the degradation products formed under stress degradation conditions, including hydrolytic and oxidative, photolytic and thermal conditions, were characterized and confirmed by MS and IR analyses. Based on the characterization data, the obtained degradation product from hydrolytic conditions was found to be methimazole—impurity A of Carbimazole as reported by the British Pharmacopeia and the European Pharmacopeia. A stability‐indicating HPLC method was carried out using a Zorbax Eclipse Plus CN column (150 × 4.6 mm i.d, 5 μm particle size) and a mobile phase composed of acetonitrile–0.05 m KH2PO4 (20: 80, v/v) in isocratic elution, at a flow rate of 1 mL/min. The method was proved to be sensitive for the determination down to 0.5% of Carbimazole impurity A. Additionally, a stability‐indicating chromatographic HPTLC method was achieved using cyclohexane–ethanol (9:1, v/v) as a developing system on HPTLC plates F254 with UV detection at 225 nm. The proposed HPLC and HPTLC methods were successfully applied to Carbimazole® tablets with mean percentage recoveries of 100.12 and 99.73%, respectively.  相似文献   

11.
Canagliflozin (CNZ) is the first sodium–glucose co-transporter-2 inhibitor approved for treatment of type 2 diabetes mellitus. In the proposed work, a sensitive, rapid and validated high-performance thin-layer chromatography (HPTLC) method was established for the estimation of CNZ in human plasma for the first time. HPTLC analysis of CNZ and internal standard (sildenafil) was performed on glass coated silica gel 60 F254 HPTLC plates using a binary mixture of chloroform–methanol 9:1 (%, v/v) as the mobile phase. Densitometric detection was done at 295 nm. Retardation factor values were obtained as 0.22 and 0.52 for the CNZ and the IS, respectively. The linearity range of CNZ was obtained as 200–3,200 ng/ml. A simple protein precipitation method was used for the extraction of analyte from plasma using methanol. The proposed HPTLC technique was validated for linearity, accuracy, precision and robustness. The proposed HPTLC technique was successfully utilized for the assessment of pharmacokinetic profile of CNZ in rats after oral administration. After oral administration, the peak plasma concentration of CNZ was obtained as 1458.01 ng/ml in 2 h. The proposed HPTLC method could be applied to the study of the pharmacokinetic profile of pharmaceutical formulations containing CNZ.  相似文献   

12.
A simple, rapid, cost-effective and accurate high performance thin layer chromatographic method has been developed for quantification of valerenic acid in Valeriana jatamansi and Valeriana officinalis which is one of the stable compounds of Valeriana officinalis and designated as a key marker compound. Valerenic acid makes substantial contribution to the sedative and spasmolytic activity of the essential oil and extract of Valeriana officinalis. Separation and quantification was achieved by HPTLC using ternary mobile phase of hexane: ethyl acetate: acetic acid (80:20:0.5 v/v) on precoated silica gel 60F254 aluminium plates and densitometric determination was carried out after derivatization with anisaldehyde-sulphuric acid reagent at 700 nm, in absorption-reflectance mode. The calibration curves were linear in the range of (500 ng–2.5 μg). This is the first HPTLC report for the identification and quantification of valerenic acid in Valeriana jatamansi and Valeriana officinalis.  相似文献   

13.
Fluorometholone (FLM) and Sodium Cromoglycate (CMG) are co-formulated in ophthalmic preparation and showed marked instability under different conditions. Two specific, sensitive and precise stability-indicating chromatographic methods have been developed and validated for their determination in the presence of their degradation products and FLM impurity. Ten components were efficiently separated by them. The first method was HPTLC-spectrodensitometry, where the separation was achieved using silica gel 60?F254 HPTLC plates and developing system of ethyl acetate: methanol (9:1, v/v). The second method was a reversed phase HPLC associated with kinetic study of the degradation process and was successfully applied for determination of the studied compounds in spiked rabbit aqueous humor. The mobile phase was acetonitrile: methanol: 0.05?M potassium dihydrogenphosphate (0.1% trimethylamine); pH 2.5, adjusted with orthophosphoric acid (20: 30: 50, by volume). In both methods, the separated components were detected at 240?nm and system suitability was checked. Good correlation was obtained in the range of 0.10–24.00 and 0.20–48.00?µg band?1, for FLM and CMG by HPTLC. While for HPLC, the linearity ranges from 0.01–50.00 and 0.05–50.00?µg?mL?1 for both drugs. The methods were applied in pharmaceutical formulation, where they were compared to the reported method with no significant difference.  相似文献   

14.
Two selective and accurate chromatographic methods are presented for simultaneous quantitation of spironolactone (SP) and furosemide (FR) and canrenone (CN), the main degradation product and the main active metabolite of SP. Method A was HPTLC, where separation was completed on silica gel HPTLC F254 plates using ethyl acetate–triethylamine–acetic acid (9:0.7:0.5, by volume) as a developing system and UV detection at 254 nm. Method B was a green isocratic RP‐HPLC utilizing a C18 (4.6 × 100 mm) column, the mobile phase consisting of ethanol–deionized water (45: 55, v/v) and UV estimation at 254 nm. Adjustment of flow rate at 1 mL/min and pH at 3.5 with glacial acetic acid was done. Regarding the greenness profile, the proposed RP‐HPLC method is greener than the reported one. ICH guidelines were followed to validate the developed methods. Successful applications of the developed methods were revealed by simultaneous determination of FR, SP and CN in pure forms and plasma samples in the ranges of 0.2–2, 0.05–2.6 and 0.05–2 μg/band for method A and 5–60, 2–60 and 2–60 μg/mL for method B for FR, SP and CN, respectively.  相似文献   

15.
High-performance thin-layer chromatography (HPTLC) is an innovative, green, reliable, and rapid method for the characterization of complex sugar mixtures. For research into sustainable nontimber forest products, Adansonia digitata dry fruit pulp in this proof-of-concept study was used to demonstrate this method due to its reported high nutritional value and prebiotic activity. Chromatographic separations were performed on (20?×?10?cm2) HPTLC glass plates with diol stationary phase, using a 15-step gradient by mixing solutions acetone/acetonitrile 1:1, and ultrapure water for enzymatic degradation products. Instead, monosaccharide moieties were separated on HPTLC silica gel 60?F254 over isocratic mode with 80?mm of eluent front composed of acetonitrile/acetic acid/water 63/33/5?v/v/v. Identification and quantification were performed by densitometry acquisitions at 400?nm after opportune derivatization. Our research highlighted that this technique can be used as a standard method to gain new insights into inulin determinations, with several advantages over existing conventional liquid chromatography. The development of innovative methods for the characterization of biopolymers is crucial, for food and nutraceutical industry and for quality control of phytochemicals. Characterization of such materials, up until now, has been done by mass difference and so accurate analytical methods were lacking.  相似文献   

16.
《Analytical letters》2012,45(12):1831-1843
Abstract

Methods for determination of oxazepam in pharmaceutical formulation by derivative ultraviolet (UV) spectrophotometry as well as high-performance thin-layer chromatography (HPTLC) UV densitometry were described. For UV-derivative spectrophotometry, some derivatives and wavelengths may be recommended for routine quality control of the drug of interest. On the other hand, HPTLC provided good results, but only when the calibration curve was estimated using nonlinear regression analysis. The HPTLC method was developed with silica F254 plates, a mobile phase of benzene/ethanol (5:1, v/v), and densitometric detection at 204 nm receiving R f  = 0.47. Developed methods were validated and found to be sufficiently precise and reproducible for established conditions.  相似文献   

17.
Two new HPTLC methods for quantification of isopropyl-9H-thioxanthen-9-one (ITX) in milk, yoghurt and fat samples have been developed. Extraction of ITX from milk and yoghurt was performed with a mixture of cyclohexane and ethyl acetate by employment of accelerated solvent extraction (ASE). For soy bean oil and margarine, a simple partitioning of ITX into acetonitrile was used. ITX and 2,4-diethyl-9H-thioxanthen-9-one (DTX) used as internal standard have been separated on silica gel 60 HPTLC plates with a mixture of toluene and n-hexane (4:1, v/v) and on RP18 HPTLC plates with a mixture of acetonitrile and water (9:1, v/v). Development was performed anti-parallel from both plate sides leading to a throughput of 36 separations in 7 min. Fluorescence measurement at 254/>400 nm was used for quantification. Limits of detection (S/N of 3) have been established to be 64 pg for ITX and DTX on both types of HPTLC plates. In fatty matrix (spiked butter) LOD of ITX was determined to be 1 μg kg−1. In the working range monitored (20–200 μg kg−1) polynomial regression of ITX showed a relative standard deviation (sdv) of ±1.51 % (r=0.99981). Starting with the limit of quantification the response was linear (sdv=±2.18 %, r=0.99893). Regarding repeatability (n=9) a coefficient of variation (CV) of 1.1 % was obtained for ITX at 32 ng on silica gel plates and of 2.9 % on reversed-phase plates. Repeatabilities (n=4) of ITX determination at 20, 50 and 100 μg kg−1 in milk, yoghurt, soybean oil and margarine showed CVs between ±1.0 and 6.4 %. The results prove that modern planar chromatography is a rapid and cost-efficient alternative method to quantify ITX in milk-based or fatty matrices. Only positive results are confirmed by online ESI/MS in the SIM mode (LOQ 128 pg) and by DART/MS involving a minimal employment of the MS device, which is a further advantage of HPTLC. Overall mean recovery rates of ITX at 20 or 50 and 100 μg kg−1 (n=8) were 41 % for milk, 70 % for yoghurt, 6 % for margarine and 12 % for soy bean oil. However, with the internal standard correction recoveries were about 130 % for milk and yoghurt and 70 and 97 % for margarine and soy bean oil, respectively.   相似文献   

18.
《Analytical letters》2012,45(2):251-258
Two methods are described for simultaneous determination of amlodipine besylate and olmesartan medoxomil in formulation. The first method was based on the HPTLC separation of two drugs on Merck HPTLC aluminium sheets of silica gel 60 F254 using n-butanol: acetic acid: water (5:1:0.1, v/v/v) as the mobile phase. The second method was based on the HPLC separation of the two drugs on the RP-PerfectSil-100 ODS-3–C18 column from MZ-Analysetechnik GmbH, Germany and acetonitrile/0.03 M ammonium acetate buffer (pH = 3) in a ratio of 55:45 as the mobile phase. Both methods have been applied to formulation without interference of excipients of formulation.  相似文献   

19.
The chemical stability of haloperidol lactate injection was studied under different storage conditions by high performance thin-layer chromatography (HPTLC). The study was performed at 25 +/- 2 degrees C and at refrigeration temperature (8 +/- 1 degrees C) in original glass ampoules over 15 days after being opened. The samples tested at 25 +/- 2 degrees C were stored with exposure to and protection from light. Chromatographic separation was achieved on precoated silica gel F 254 HPTLC plates using a mixture of acetone/chloroform/n-butanol/glacial acetic acid/water (5:10:10:2.5:2.5, v/v/v/v/v) as a mobile phase. Quantitative analyses were carried out at a wavelength of 254 nm. The method exhibited adequate linearity (r = 0.999), selectivity, precision (RSD = 1.92%), and accuracy (recoveries from 98.59 to 101.90%). The concentrations of all samples remained greater than or 90% of the original concentration. Haloperidol lactate injection was chemically stable under all conditions studied over 15 days.  相似文献   

20.
Artemisinin (AN) and artemisinic acid (AA), valuable phyto‐pharmaceutical molecules, are well known anti‐malarials, but their activities against diseases like cancer, schistosomiasis, HIV, hepatitis‐B and leishmaniasis are also being reported. For the simultaneous estimation of AN and AA in the callus and leaf extracts of A. annua L. plants, we embarked upon a simple, rapid, selective, reliable and fairly economical high performance thin layer chromatography (HPTLC) method. Experimental conditions such as band size, chamber saturation time, migration of solvent front and slit width were critically studied and the optimum conditions were selected. The separations were achieved using toluene–ethyl acetate, 9:1 (v/v) as mobile phase on pre‐coated silica gel plates, G 60F254. Good resolution was achieved with Rf values of 0.35 ± 0.02 and 0.26 ± 0.02 at 536 nm for AN and 626 nm for AA, respectively, in absorption–reflectance mode. The method displayed a linear relationship with r2 value 0.992 and 0.994 for AN and AA, respectively, in the concentration range of 300–1500 ng for AN and 200–1000 ng for AA. The method was validated for specificity by obtaining in‐situ UV overlay spectra and sensitivity by estimating limit of detection (30 ng for AN and 15 ng for AA) and limit of quantitation (80 ng for AN and 45 ng for AA) values. The accuracy was checked by the recovery studies conducted at three different levels with the known concentrations and the average percentage recovery was 101.99% for AN and 103.84% for AA. The precision was analyzed by interday and intraday precision and was 1.09 and 1.00% RSD for AN and 1.22 and 6.05% RSD for AA. The analysis of statistical data substantiates that this HPTLC method can be used for the simultaneous estimation of AN and AA in biological samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号