首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The short-bite aminobis(phosphonite), PhN{P(-OC10H6(mu-S)C10H6O-)}2 (2), containing a mesocyclic thioether backbone is synthesized by either treating PhN(PCl2)2 with 2 equiv of thiobis(2,2'-naphthol) or reacting chlorophosphite (-OC10H6(mu-S)C10H6O-)PCl (1) with aniline in the presence of a base. Treatment of 2 with an equimolar amount of Pd(COD)Cl2 in the presence of H2O affords a P-N-P-bridged and P,S-metalated binuclear complex, [PhN(P(-OC10H6(mu-S)C10H6O-)-kappaP)2Pd2Cl2{P(-OC10H6(mu-S)C10H6O-)(O)-kappaP,kappaS}2] (3), whereas the same reaction with 2 equiv of Pd(COD)Cl2 in the presence of H2O and Et3N produces the mononuclear anionic complex [{(-OC10H6(mu-S)C10H6O-)P(O)-kappaP,kappaS}PdCl2](Et3NH) (5). By contrast, reaction of 2 with 2 equiv of Pd(COD)Cl2 and H2O in the absence of Et3N gives the hydrogen phosphonate coordinated complex [{(-OC10H6(mu-S)C10H6O-)P(OH)}PdCl2] (4) which converts to the anionic complex in solution or in the presence of a base. Compound 2 on treatment with Pt(COD)X2 (X = Cl or I) afforded P-coordinated four-membered chelate complexes [PhN(P(-OC10H6(mu-S)C10H6O-)-kappaP)2PtX2] (6 X = Cl, 7 X = I). The crystal structures of compounds 2, 3, 5, and 7 are reported. Compound 3 is the first example of a crystallographically characterized binuclear palladium complex containing a bidentate bridging ligand and its hydrolyzed fragments forming metallacycles containing a palladium-phosphorus sigma bond. All palladium complexes proved to be very good catalysts for the Suzuki-Miyaura and Mizoroki-Heck cross-coupling and amination reactions with excellent turnover numbers (TON up to 1.46 x 105 in the case of the Suzuki-Miyaura reaction).  相似文献   

2.
The synthesis, characterization and reactivity of heteroleptic rare earth metal complexes supported by the carbon-bridged bis(phenolate) ligand 2,2'-methylene-bis(6-tert-butyl-4-methyl-phenoxo) (MBMP(2-)) are described. Reaction of (C(5)H(5))(3)Ln(THF) with MBMPH(2) in a 1 : 1.5 molar ratio in THF at 50 degrees C produced the heteroleptic rare earth metal bis(phenolate) complexes (C(5)H(5))Ln(MBMP)(THF)(n) (Ln = La, n = 3 (); Ln = Yb (), Y (), n = 2) in nearly quantitative yields. The residual C(5)H(5)(-) groups in complexes to can be substituted by the bridged bis(phenolate) ligands at elevated temperature to give the neutral rare earth metal bis(phenolate) complexes, and the ionic radii have a profound effect on the structures of the final products. Complex reacted with MBMPH(2) in a 1 : 0.5 molar ratio in toluene at 80 degrees C to produce a dinuclear complex (MBMP)La(THF)(mu-MBMP)(2)La(THF)(2) () in good isolated yield; whereas complexes and reacted with MBMPH(2) under the same conditions to give (MBMP)Ln(MBMPH)(THF)(2) (Ln = Yb (), Y ()) as the final products, in which one hydroxyl group of the phenol is coordinated to the rare earth metal in a neutral fashion. The reactivity of complexes and with some metal alkyls was explored. Reaction of complex with 1 equiv. of AlEt(3) in toluene at room temperature afforded unexpected ligand redistributed products, and a discrete ion pair ytterbium complex [(MBMP)Yb(THF)(2)(DME)][(MBMP)(2)Yb(THF)(2)] () was isolated in moderate yield. Furthermore, reaction of complex with 1 equiv. of ZnEt(2) in toluene gave a ligand redistributed complex [(mu-MBMP)Zn(THF)](2) () in reasonable isolated yield. Similar reaction of complex with ZnEt(2) also afforded complex ; whereas the reaction of complex with 1 equiv. of n-BuLi in THF afforded the heterodimetallic complex [(THF)Yb(MBMP)(2)Li(THF)(2)] (). All of these complexes were well characterized by elemental analyses, IR spectra, and single-crystal structure determination, in the cases of complexes , and -.  相似文献   

3.
The synthesis of the following crystalline complexes is described: [Li(L)(thf)2] (), [Li(L)(tmeda)] (), [MCl2(L)] [M=Al (), Ga ()], [In(Cl)(L)(micro-Cl)2Li(OEt2)2] (), [In(Cl)(L){N(H)C6H3Pri(2)-2,6}] (), [In(L){N(H)C6H3Pri(2)-2,6}2] (), [{In(Cl)(L)(micro-OH)}2] (), [L(Cl)In-In(Cl)(L)] () (the thf-solvate, the solvate-free and the hexane-solvate), [{In(Cl)L}2(micro-S)] () and [InCl2(L)(tmeda)] () ([L]-=[{N(C6H3Pri(2)-2,6)C(H)}2CPh]-). From H(L) (), via Li(L) in Et2O, and thf, tmeda, AlCl3, GaCl3 or InCl3 there was obtained , , , or , respectively in excellent yield. Compound was the precursor for each of , and [{InCl3(tmeda)2{micro-(OSnMe2)2}}] () by treatment with one () or two () equivalents of K[N(H)(C6H3Pri(2)-2,6)], successively Li[N(SiMe3)(C6H3Pri(2)-2,6)] and moist air (), Na in thf (), tmeda (), or successively tmeda and Me3SnSnMe3 (). Crystals of (with an equivalent of In) and were obtained from InCl or thermolysis of [In(Cl)(L){N(SiMe3)(C6H3Pri(2)-2,6)}] () {prepared in situ from and Li[N(SiMe3)(C6H3Pri(2)-2,6)] in Et2O}, respectively. Compound was obtained from a thf solution of and sulfur. X-Ray data for crystalline , , , , , and are presented. The M(L) moiety in each (not the L-free ) has the monoanionic L ligated to the metal in the N,N'-chelating mode. The MN1C1C2C3N2 six-membered M(L) ring is pi-delocalised and has the half-chair (, and ) or boat (, and ) conformation.  相似文献   

4.
The reaction of CuCl(2).2 H2O with trivacant Keggin polyoxoanions K8Na2[A-alpha-GeW9O34].25 H2O or K10[A-alpha-SiW9O34].25 H2O in the presence of 1,2-diaminopropane (dap), ethylenediamine (en) or 2,2'-bipyridine (2,2'-bpy) under hydrothermal conditions afforded five novel hybrid inorganic-organic octa-Cu sandwiched polyoxotungstates (POTs): H4[CuII8(dap)4(H2O)2(B-alpha-GeW9O34)2].13 H2O (1), (H2en)2[CuII8-(en)4(H2O)2(B-alpha-GeW9O34)2].5 H2O(2), (H2en)2[CuII8(en)4(H2O)2(B-alpha-SiW9-O34)2].8 H2O (3), [CuII(H2O)2]H2[CuII8-(en)4(H2O)2(B-alpha-SiW9O34)2] (4), and [CuII2(H2O)2(2,2'-bpy)2]{[CuII(bdyl)]2-[CuII8(2,2'-bpy)4(H2O)2(B-alpha-GeW9-O34)2]}.4 H2O (bdyl=2,2'-bipyridinyl)(5). Additionally, CuCl(2).2 H2O reacts with the mixture of GeO2, Na2WO(4).2 H2O, H2SiW12O(40).2 H2O in the presence of 2,2'-bpy and 4,4'-bpy under hydrothermal conditions leading to another novel mixed-valent octa-Cu sandwiched POT hybrid: [CuI(2,2'-bpy)(4,4'-bpy)]2[{CuI2(2,2'-bpy)2(4,4'-bpy)]2[CuI2CuII6(2,2'-bpy)2(4,4'-bpy)2(B-alpha-GeW9O34)2}].2 H2O (6). 1, 2, and 3 are discrete dimers constructed from two trivacant Keggin [B-alpha-XW9O34]10- (X=GeIV/SiIV) fragments and an octa-Cu cluster whereas 4 displays the 3D (3,6)-connected nets with (4.6(2))(4(2).6(4).8(7).10(2)) topology, which are built by octa-Cu sandwiched polyoxometalate building blocks through copper cation bridges. 5 is a novel 2D layer based on octa-Cu sandwiched POT clusters and [CuII2(bdyl)] units. Interestingly, the rollover metalation of 2,2'-bpy is firstly observed in the system containing the copper complex under hydrothermal conditions. 6 is a discrete mixed-valent octa-Cu sandwiched POT supported by two CuI-complexes [CuI2-(2,2'-bpy)2(4,4'-bpy)]2+ through 4,4'-bpy bridges, which constructs a novel dodeca-copper cluster. Notably, the octa-Cu cluster in 6 is mixed-valent and is different from those in 1-5. To our knowledge, 1-6 represent a rare family of POTs incorporating novel octa-nuclear transition-metal clusters in polyoxometalate chemistry. They were structurally characterized by FT-IR spectra, elemental analysis, thermogravimetric analysis, and single-crystal X-ray diffraction. The magnetic properties of 1, 4, and 5 were quantitatively analyzed by the MAGPACK software package.  相似文献   

5.
An organic-inorganic compound [Cu(2,2'-bpy)2][{Cu(2,2'-bpy)2}2W12O4o(H2)]·4H2O (Mr = 4048.00) was prepared from the hydrothermal reaction of Na2WO4·2H2O, CuCl2·2H2O,2,2'-bipyridine (2,2'-bpy) and H2O at 160 ℃ for 4 days. The compound crystallizes in the monoclinic system, space group P21/n with a = 18.9196(8), b = 20.4212(8), c = 21.8129(9)(A), β=96.992(3)°, V= 8365.0(6) (A)3, Dc= 3.214 g/cm3, Z = 4,μ(MoKα) = 17.269 mm-1 and F(000) = 7324.Of the 119837 total reflections, 17315 were unique (Rint = 0.0489). The final R = 0.0385 and wR =0.0770 for 11142 observed reflections with I > 2σ(I). Single-crystal X-ray diffraction reveals that the structure is composed of [{Cu(2,2'-bpy)2}2W12O40(H2)]2- anions, discrete [Cu(2,2'-bpy)2]2 cations and lattice water molecules, and the anion is made up of a {W12O40(H2)}6- α-Keggin core decorated with two {Cu(2,2'-bpy)2}2 groups through bridging oxygen atoms.  相似文献   

6.
The metal halides of Group 5 MX(5) (M = Nb, Ta; X = F, Cl, Br) react with ketones and acetylacetones affording the octahedral complexes [MX(5)(ketone)] () and [TaX(4){kappa(2)(O)-OC(Me)C(R)C(Me)O}] (R = H, Me, ), respectively. The adducts [MX(5)(acetone)] are still reactive towards acetone, acetophenone or benzophenone, giving the aldolate species [MX(4){kappa(2)(O)-OC(Me)CH(2)C(R)(R')O}] (). The syntheses of (M = Ta, X = F, R = R' = Ph) and (M = Ta, X = Cl, R = Me, R' = Ph) take place with concomitant formation of [(Ph(2)CO)(2)-H][TaF(6)], and [(MePhCO)(2)-H][TaCl(6)], respectively. The compounds [acacH(2)][TaF(6)], and [TaF{OC(Me)C(Me)C(Me)O}(3)][TaF(6)], have been isolated as by-products in the reactions of TaF(5) with acacH and 3-methyl-2,4-pentanedione, respectively. The molecular structures of, and have been ascertained by single crystal X-ray diffraction studies.  相似文献   

7.
Four hybrid inorganic-metalorganic compounds containing copper(II)-monosubstituted Keggin polyoxotungstates, K3[Cu(I)(4,4'-bpy)]3[SiW11Cu(II)O39].11H2O (1), (paraquat)3[SiW11Cu(II)O39].6H2O (2; paraquat = N,N'-dimethyl-4,4'-bipyridinium), K3[Cu(I)(4,4'-bpy)]3[GeW11Cu(II)O39].11H2O (3), and Na2[Cu(I)(4,4'-bpy)]3[PW11Cu(II)O39(H2O)].4H2O (4), have been synthesized under autogenous pressure hydrothermal conditions and characterized by elemental analysis and infrared spectroscopy (FT-IR). The crystal structures of 1, 2, and 4 have been established by single-crystal X-ray diffraction. The crystal packings are characterized by the presence of monodimensional extended entities: either the polymeric polyanion [SiW11CuO39]n(6n-) (2), the cationic [Cu(4,4'-bpy)]n(n+) chain (4), or both simultaneously as in compound 1, where the inorganic and metalorganic sublattices are mutually perpendicular. To asses the influence of packing in the copper(I) complex structural diversity found in compounds 1 and 4, a search in the CSD database has been performed and the resulting geometrical features have been analyzed and compared with experimental crystallographic data and DFT calculations.  相似文献   

8.
Mesocyclic thioether-aminophosphonite ligands, {-OC10H6(mu-S)C10H6O-}PNC4H8O (2a, 4-(dinaphtho[2,1-d:1',2'-g][1,3,6,2]dioxathiaphosphocin-4-yl)morpholine) and {-OC10H6(mu-S)C10H6O-}PNC4H8NCH3 (2b, 1-(dinaphtho[2,1-d:1',2'-g][1,3,6,2]dioxathiaphosphocin-4-yl)-4-methylpiperazine) are obtained by reacting {-OC10H6(mu-S)C10H6O-}PCl (1) with corresponding nucleophiles. The ligands 2a and 2b react with (PhCN)2PdCl2 or M(COD)Cl2 (M = Pd(II) or Pt(II)) to afford P-coordinated cis-complexes, [{(-OC10H6(mu-S)C10H6O-)PNC4H8X-kappaP}2MCl2] (3a, M = Pd(II), X = O; 3b, M = Pd(II), X = NMe; 4a, M = Pt(II), X = O; 4b, M = Pt(II), X = NMe). Compounds 2a and 2b, upon treatment with [Pd(eta3-C3H5)Cl]2 in the presence of AgOTf, produce the P,S-chelated cationic complexes, [{(-OC10H6(mu-S)C10H6O-)PNC4H8X-kappaP,kappaS}Pd(eta3-C3H5)](CF3SO3) (5a, X = O and 5b, X = NMe). Treatment of 2a and 2b with (PhCN)2PdCl2 in the presence of trace amount of H2O affords P,S-chelated anionic complexes, [{(-OC10H6(mu-S)C10H6O-)P(O)-kappaP,kappaS}PdCl2](H2NC4H8X) (6a, X = O and 6b, X = NMe), via P-N bond cleavage. The crystal structures of compounds 1, 2a, 2b, 4a, and 6a are reported. Compound 6a is a rare example of crystallographically characterized anionic transition metal complex containing a thioether-phosphonate ligand. Most of these palladium complexes proved to be very active catalysts for the Suzuki-Miyaura reaction with excellent turnover number ((TON), up to 9.2 x 10(4) using complex 6a as a catalyst).  相似文献   

9.
This paper describes the synthesis and selected reactions of a series of crystalline mono(beta-diiminato)yttrium chlorides , , , , , , and . The X-ray structure of each has been determined, as well as of [YCl()(2)] (), [Y()(2)OBu(t)] () and [Y{CH(SiMe(3))(2)}(thf)(mu-Cl)(2)Li(OEt(2))(2)(mu-Cl)](2) (). The N,N'-kappa(2)-beta-diiminato ligands were [{N(R)C(Me)}(2)CH](-) [R = C(6)H(4)Pr(i)-2 (); R = C(6)H(4)Bu(t)-2 (); R = C(6)H(3)Pr(i)(2)-2,6 ()], [{N(SiMe(3))C(Ph)}(2)CH)](-) () and [{N(C(6)H(3)Pr(i)(2)-2,6)C(H)}(2)CPh](-) (). Equivalent portions of Li[L(x)] and YCl(3) in Et(2)O under mild conditions yielded [Y(mu-Cl)(L(x))(mu-Cl)(2)Li(OEt(2))(2)](2) [L(x) = () or ()] and [Y(mu-Cl)()(mu-Cl)Li(OEt(2))(2)(mu-Cl)](2) () or its thf (instead of Et(2)O) equivalent . Each of the Li(OEt(2))(2)Cl(2) moieties is bonded in a terminal () or bridging () mode with respect to the two Y atoms; the difference is attributed to the greater steric demand of than or . Under slightly more forcing conditions, YCl(3) and Li() (via) gave the lithium-free complex [YCl(2)()(thf)(2)] (). Two isoleptic compounds and (having in place of in , and , respectively) were obtained from YCl(3) and an equivalent portion of K[] and Na[], respectively; under the same conditions using Na[], the unexpected product was [YCl()(2)] () (i.e. incorporating only one half of the YCl(3)). A further unusual outcome was in the formation of from and 2 Li[CH(SiMe(3))(2)]. Compound [Y(){N(H)C(6)H(3)Pr(i)(2)-2,6}(thf)(mu(3)-Cl)(2)K](2).4Et(2)O (), obtained from and K[N(H)C(6)H(3)Pr(i)(2)-2,6], is noteworthy among group 3 or lanthanide metal (M) compounds for containing MClKCl (M = Y) moieties.  相似文献   

10.
Biphenylamide ligands were employed to prepare a series of Li and Al derivatives in which the ligand binds through N. Such species include: (2-C(6)H(4)Ph)Bu(t)NLi (), (2-C(6)H(4)Ph)Bu(t)NLi(THF)(2) (), (2-C(6)H(4)Ph)Bu(t)NLi.OEt(2) (), [(mu-(2-C(6)H(4)Ph)(2)N)Li](2) (), (2-C(6)H(4)Ph)(2)NLi(THF)(2) (), (2-C(6)H(4)Ph)(2)NLi.OEt(2) () amd (2-C(6)H(4)Ph)(2)NAlX(2) (X = Cl (), Me (), Et ()). Structural and spectroscopic data show that these species exhibit weak arene to metal donation. This donor is hemilabile being readily displaced by other stronger donors to give such species as (2-C(6)H(4)Ph)(2)NAlMe(2)(THF) () and (2-C(6)H(4)Ph)(2)NAlMe(2)(CH(2)PPh(3)) (). Reactions of with B(C(6)F(5))(3) results in methyl for C(6)F(5) exchange and isolation of (2-C(6)H(4)Ph)(2)NAl(C(6)F(5))(2) (). The presence the electron withdrawing groups in further strengthens the hemilabile interaction.  相似文献   

11.
The binuclear cycloaurated compounds [Au(2)(mu-C(6)H(3)-2-PPh(2)-n-Me)(2)] (n = 5, 1a; n = 6, 1b) react with the digold(I) complexes [Au(2)(mu-S(2)CN(n)()Bu(2))(2)] and [Au(2)(mu-dppm)(2)](PF(6))(2) to give heterobridged dinuclear complexes [Au(2)(mu-C(6)H(3)-2-PPh(2)-n-Me)(mu-S(2)CN(n)Bu(2))] (n = 5, 5a; n = 6, 5b) and [Au(2)(mu-C(6)H(3)-2-PPh(2)-n-Me)(mu-dppm)]PF(6), (n = 5, 9a; n = 6, 9b), respectively. Complex 5a exists in the solid state as an infinite zigzag chain of dimeric units with intramolecular Au-Au separations of 2.8331(3) and 2.8243(3) A for independent molecules and intermolecular Au-Au separations of 3.0653(3) and 3.1304(3) A. Both 5a and 5b undergo oxidative addition with halogens to give the heterovalent, gold(I)-gold(III) compounds [XAu(I)(mu-2-Ph(2)PC(6)H(3)-n-Me)Au(III)X(eta(2)-S(2)CN(n)Bu(2))] [n = 5, X = Cl (6a), I (8a); n = 6, X = Cl (6b), Br (7b), I (8b)]. Compound 8a has been shown by X-ray crystallography to contain a gold(III) atom coordinated in a planar array by bidentate, chelating di-n-butyldithiocarbamate, iodide, and the sigma-aryl carbon atom, together with a gold(I) atom that is linearly coordinated by the phosphorus atom of the arylphosphine and by iodide. The intramolecular gold-gold distance of 3.2201(3) A indicates little or no interaction between the metal atoms. In contrast to the behavior of the homobridged complexes 1a and 1b, the heterobridged dithiocarbamate complexes 5a and 5b give structurally similar products on reaction with halogens, irrespective of the position of the ring methyl substituent. Crystal data for [Au(2)(mu-C(6)H(3)-2-PPh(2)-5-Me)(mu-S(2)CN(n)Bu(2))] (5a): triclinic, space group P1 (No. 2), with a = 11.3398(1), b = 15.9750(2), c = 16.4400(3) A, alpha = 91.0735(9), beta = 109.3130(7), gamma = 90.7666(8) degrees, V = 2809.47(6) A(3), and Z = 4. Crystal data for [IAu(I)(mu-2-Ph(2)PC(6)H(3)-5-Me)Au(III)I(eta(2)- S(2)CN(n)Bu(2))] (8a): triclinic, space group P1 (No. 2), with a = 8.6136(2), b = 9.3273, c = 21.1518(4) A, alpha = 84.008(1), beta = 84.945(1), gamma = 75.181(1) degrees, V = 1630.54(6) A(3), and Z = 2.  相似文献   

12.
The solvated yttrium iodide precursors [Y(L)(8)]I(3) (L = DMSO or DMF), prepared in situ by stirring YI(3)(Pr(i)OH)(4) in DMSO or DMF, react with CuI in the presence of NH(4)I to give ionic hetero-metallic species [Y(DMSO)(8)][Cu(2)(mu-I)I(4)] (1) and [Y(DMF)(8)][Cu(4)(mu(3)-I)(2)(mu-I)(3)I(2)] (2) in excellent yields. Re-crystallization of 1 from DMF afforded the mixed-solvate complex [Y(DMSO)(6)(DMF)(2)][CuI(3)][I] (3). Compounds 2 and 3 undergo unique crystal-to-crystal transformation via progressive substitution of DMF by water molecules in a confined, solvent-free environment. Thus, crystals of 3 transform into [Y(DMSO)(6)(H(2)O)(2)][CuI(3)][I] (4), whereas a discrete ion-pair assembly of 2 is first converted into a 1-D zig-zag structure [Y(DMF)(6)(H(2)O)(2)](3+)[Cu(7)(mu(4)-I)(3)(mu(3)-I)(2)(mu-I)(4)(I)](1infinity)(3-) (5) and finally into a 2-D sheet containing mixed-valent copper atoms, [Y(DMF)(6)(H(2)O)(3)](3+)[Cu(I)(7)Cu(II)(2)(mu(3)-I)(8)(mu-I)(6)](2infinity)(3-) (6). The bi- and tetrafurcate H-bonding between water ligands on yttrium and iodides of the Cu-I cluster plays a pivotal role in the evolution of structures 4-6. Formation of a wide range of iodocuprate structures in 1-6, from discrete mono-, di- or tetranuclear units to one- and two-dimensional extended arrays, reflects the influence of solvated yttrium cations on the nuclearity and dimensionality of Cu-I clusters. TG-DTA-MS studies and DFT calculations for these complexes have also been carried out in order to determine their thermal stability and have insight about aforesaid transformations.  相似文献   

13.
The tricoordinated cationic Cu(I) complex [Cu(kappa2-P,P'-DPEphos)(kappa1-P-DPEphos)][BF4] (1) (DPEphos = bis(2-(diphenylphosphino)phenyl) ether) containing a dangling phosphorus center was synthesized from the reaction of [Cu(CH3CN)4][BF4] with DPEphos in a 1:2 molar ratio in dichloromethane. When complex 1 is treated with MnO2, elemental sulfur, or selenium, the uncoordinated phosphorus atom undergoes oxidation to form a P=E bond resulting in the formation of complexes of the type [Cu(kappa2-P,P'-DPEphos)(kappa2-P,E-DPEphos-E)][BF4] (2, E = O; 3, E = S; 4, E = Se) containing a Cu-E bond. The zigzag polymeric CuI complex [Cu(kappa2-P,P'-DPEphos)(micro-4,4'-bpy)]n[BF4]n (5) was prepared by the reaction of [Cu(CH3CN)4][BF4] with DPEphos and 4,4'-bipyridine in an equimolar ratio. The stereochemical influences of DPEphos on its coordination behavior are examined by density functional theory calculations.  相似文献   

14.
Transition metal complexes of bis(2-diphenylphosphinoxynaphthalen-1-yl)methane (1) are described. Bis(phosphinite) 1 reacts with Group 6 metal carbonyls, [Rh(CO)2Cl]2, anhydrous NiCl2, [Pd(C3H5)Cl]2/AgBF4 and Pt(COD)I2 to give the corresponding 10-membered chelate complexes 2, 3 and 5-8. Reaction of 1 with [Rh(COD)Cl]2 in the presence of AgBF4 affords a cationic complex, [Rh(COD){Ph2P(-OC10H6)(mu-CH2)(C10H6O-)PPh2-kappaP,kappaP}]BF4 (4). Treatment of 1 with AuCl(SMe2) gives mononuclear chelate complex, [(AuCl){Ph2P(-OC10H6)(mu-CH2)(C10H6O-)PPh2-kappaP,kappaP}] (9) as well as a binuclear complex, [Au(Cl){mu-Ph2P(-OC10H6)(mu-CH2)(C10H6O-)PPh2-kappaP,kappaP}AuCl] (10) with ligand 1 exhibiting both chelating and bridged bidentate modes of coordination respectively. The molecular structures of 2, 6, 7, 9 and 10 are determined by X-ray studies. The mixture of Pd(OAc)2 and effectively catalyzes Suzuki cross-coupling reactions of a range of aryl halides with aryl boronic acid in MeOH at room temperature or at 60 degrees C, giving generally high yields even under low catalytic loads. The cationic rhodium(I) complex, [Rh(COD){Ph2P(-OC10H6)(mu-CH2)(C10H6O-)PPh2-kappaP,kappaP}]BF4 (4) catalyzes the hydrogenation of styrenes to afford the corresponding alkyl benzenes in THF at room temperature or at 70 degrees C with excellent turnover frequencies.  相似文献   

15.
Three 2,2'-bipyridine (2,2'-bpy) complexes of Pt(IV) have been synthesized, characterized by X-ray crystallography, and their solution behavior in D(2)O studied by (1)H NMR spectroscopic analysis: mer-[PtCl(3)(2,2'-bpy)(MeNH(2))]ClH(2)O (4), trans-[PtCl(2)(2,2'-bpy)(MeNH(2))(2)]Cl(2) (5), and trans-[Pt (2,2'-bpy)(MeNH(2))(2)(OH)(2)]Cl(2) (6; MeNH(2)=methylamine). Complexes 4 and 5 undergo hydrolysis of the Cl(-) ions, both in the dark and daylight, as evident from a drop in the pH value. Two solvolysis products were detected in the case of 4, which is indicative of species with equatorial and axial OH(-) groups. The hydrolysis reaction of 5 implies that an axial Cl(-) group is replaced by an OH(-) moiety; in contrast, 6 remains virtually unaffected. Ordinary daylight, in particular irradiation with a 50-W halogen lamp, initially causes ligand-isomerization processes, which are followed by the reduction of 4 and 5 to Pt(II) species. This reduction of 4 and 5 is accompanied by the formation of hypochlorous acid, as demonstrated qualitatively in the decoloration test of indigo, and loss of MeNH(2), which is particularly pronounced in the case of 5. The formation of Pt(II) compounds is established on the basis of the J coupling constants of (195)Pt with selected (1)H NMR resonances. The results obtained herein are possibly also relevant to the chemistry of Cl-containing Pt(IV) antitumor agents and their reactions with DNA.  相似文献   

16.
Condensation of Ph(2)PH and paraformaldehyde with 2-amino-7-methyl-1,8-naphthyridine gave the new flexible tridentate ligand 2-[N-(diphenylphosphino)methyl]amino-7-methyl-1,8-naphthyridine (L). Reaction of L with [Cu(CH(3)CN)(4)]BF(4) and/or different ancillary ligands in dichloromethane afforded N,P chelating or bridging luminescent complexes [(L)(2)Cu(2)](BF(4))(2), [(micro-L)(2)Cu(2)(PPh(3))(2)](BF(4))(2) and [(L)Cu(CNN)]BF(4) (CNN = 6-phenyl-2,2'-bipyridine), respectively. Complexes [(L)(2)Pt]Cl(2), [(L)(2)Pt](ClO(4))(2) and [(L)Pt(CNC)]Cl (CNC = 2,6-biphenylpyridine) were obtained from the reactions of Pt(SMe(2))(2)Cl(2) or (CNC)Pt(DMSO)Cl with L. The crystal structures and photophysical properties of the complexes are presented.  相似文献   

17.
Five new materials built from polyoxotungstates and Cu(ii) ions as linkers have been synthesized by hydrothermal reactions from a mixture of sodium tungstate, copper chloride and bipyridine. The value of the initial pH, the nature of the heteroelement (P or Si) and of the ligand (2,2'- and/or 4,4'-bipyridine) permit the control of the nature of the polyoxotungstate clusters and their connectivity via the copper ions, and hence the dimensionality of the framework. A single phase has been obtained with silicon as heteroelement at an initial pH of 5, namely the 2D material [SiW(12)O(40)][Cu(2,2'-bpy)(2)](2).10H(2)O (1) with saturated Keggin polyoxotungstates linked by {Cu(2,2'-bpy)(2)}(2+) groups. With phosphorous as heteroelement and at the same initial pH, three different structures have been isolated according to the nature of the ligand. Indeed, the two 1D materials [{Cu(5)(2,2'-bpy)(5)(H(2)O)(HPO(4))(PO(4))}PW(11)CuO(39)].6H(2)O (2) with 2,2'-bpy and [4,4'-Hbpy][{Cu(2)(2,2'-bpy)(2)(4,4'-bpy)(2.5)}PW(11)CuO(39)].16H(2)O (3) with a mixture of 2,2'- and 4,4'-bpy have been characterized, and a coordination polymer with polyoxometalate guests Na(3)[4,4'-Hbpy]{Cu(4)(4,4'-bpy)(8)(H(2)O)(8)}[PW(11)CuO(39)(H(2)O)][PW(10)Cu(2)O(38)(H(2)O)(2)].38H(2)O (4) with 4,4'-bpy has been obtained. Finally, in basic medium (pH = 10) the unprecedented molecular cluster Na(2)[{Cu(8)(2,2'-bpy)(8)}(PW(8)O(31))(2)].15H(2)O (5) has been evidenced. Magnetic studies of compound 2 revealed that the predominant interactions involve only 4 paramagnetic centers, which are interacting within pairs, among the 6 Cu(ii) centers. The chi(M)T=f(T) curve can be fitted using the dinuclear expression appropriate to the HDVV isotropic exchange Hamiltonian H=-JS(1)xS(2), with S(1)=S(2)=(1/2) and J=-105.4 cm(-1), showing strong antiferromagnetic interactions within the two Cu(ii) pairs.  相似文献   

18.
The reaction of cyclohexylphosphonic acid (C(6)H(11)PO(3)H(2)), anhydrous CuCl(2) and 2,2'-bipyridine (bpy) in the presence of triethylamine followed by a metathesis reaction with KNO(3) afforded [Cu(4)(mu-Cl)(2)(mu(3)-C(6)H(11)PO(3))(2)(bpy)(4)](NO(3))(2) (1). In an analogous reaction involving Cu(OAc)(2).H(2)O, the complex [Cu(4)(mu-CH(3)COO)(2)(mu(3)-C(6)H(11)PO(3))(2)(2,2'-bpy)(4)](CH(3)COO)(2) (2) has been isolated. The three-component reaction involving Cu(NO(3))(2).3H(2)O, cyclohexylphosphonic acid and 2,2'-bipyridine in the presence of triethylamine afforded the tetranuclear assembly [Cu(4)(mu-OH)(mu(3)-C(6)H(11)PO(3))(2)(2,2'-bpy)(4) (H(2)O)(2)](NO(3))(3) (3). Replacing 2,2'-bipyridine with 1,10-phenanthroline (phen) in the above reaction resulted in [Cu(4)(mu-OH)(mu(3)-C(6)H(11)PO(3))(2)(phen)(4)(H(2)O)(2)](NO(3))(3) (4). In all the copper(II) phosphonates (1-4) the two phosphonate ions bridge the four copper(II) ions in a capping coordination action. Each phosphonate ion bridges four copper(II) ions in a mu(4), eta(3) coordination mode or 4.211 of the Harris notation. Variable-temperature magnetic studies on reveal that all four complexes exhibit moderately strong intramolecular antiferromagnetic coupling. The DNA cleavage activity of complexes 1-4 is also described. Compounds 1 and 3 were able to completely convert the supercoiled pBR322 DNA form I to nick form II without any co-oxidant. In contrast, 50% conversion occurred with and 40% with 4. In the presence of magnesium monoperoxyphthalate all four compounds achieved rapid conversion of form I to form II.  相似文献   

19.
Reaction of trans-[(MCp)(2)(mu-CH(2))(2)Cl(2)] (M = Rh, Ir; Cp = eta(5)-C(5)Me(5)) with Li(2)S(2) afforded the disulfido complexes [(MCp)(2)(mu-CH(2))(2)(mu-S(2)-S:S')] which were easily oxidized by O(2) to give the oxygenated complexes [(MCp)(2)(mu-CH(2))(2)(mu-SSO(2)-S:S')]. Although [(RhCp)(2)(mu-CH(2))(2)(mu-S(2)-S:S')] gave a complicated mixture when reacted with CH(2)Cl(2) or CHCl(3), [(IrCp)(2)(mu-CH(2))(2)(mu-S(2)-S:S')] reacted with both CH(2)Cl(2) and CHCl(3) to give the dithioformato complex [(IrCp)(2)(mu-CH(2))(2)(mu-S(2)CH-S:S')]Cl and the cyclotetrasulfido complex [((IrCp)(2)(mu-CH(2))(2))(2)(mu-S(4)-S:S':S":S"')]Cl(2). The oxygenated complexes [(RhCp)(2)(mu-CH(2))(2)(mu-SSO(2)-S:S')] reacted with hydrocarbyl halides to afford bridging hydrocarbyl thiolato complexes accompanied by the generation of SO(2) gas. These complexes have been characterized by NMR spectroscopy, ESI-MS, and X-ray diffraction.  相似文献   

20.
Ferrocene-based ligands 1,1'-di(pyrazinyl)ferrocene (L1) and 1,1'-di(2-pyrimidinyl)ferrocene (L2) were synthesized and copper and silver complexes were obtained from L1. Coordination polymers [{Cu(2)(PhCOO)(4)}(L1)](n) (1), [{Cu(2)(C(5)H(11)COO)(4)}(L1)](n) (2), and [{Cu(2)(OAc)(4)}(L1)](n).0.5n[Cu(2)(OAc)(4)(H(2)O)(2)].1.5nCH(3)CN (3) resulted from the reaction with the corresponding copper carboxylates. In all three complexes, L1 links the dinuclear copper carboxylate units to form one-dimensional step-like chains. In 2, these chains are further linked by [Cu(2)(OAc)(4)(H(2)O)(2)] dinuclear units via hydrogen bonding to form sheet structures. The reaction of L1 with copper(I) iodide resulted in a multinuclear complex [(CuI)(4)(L1)(2)].(L1) (4), which contains a [(CuI)(4)(L1)(2)] diferrocene unit with a step-like (CuI)(4) core. Reactions of L1 with silver(I) salts resulted in silver-bridged diferrocenes [Ag(2)(L1)(2)]X(2) (X = ClO(4) (5a, b), NO(3) (6a-c) and PF(6) (7)), some of which incorporate aromatic solvents into their crystal lattices. The intramolecular Ag...Ag separations in these metallamacrocycles (3.211-3.430 A) depended upon the counter-anions and on the coordination mode of the silver ions. In all of these coordination complexes, L1adopts a synperiplanar eclipsed conformation and acts as a bidentate ligand, with only the 5-nitrogen of each pyrazine ring involved in coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号