首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Performance of continuous polymer enhanced ultrafiltration (PEUF) method was investigated for removal of mercury and cadmium from binary mixtures. This method includes the addition of polyethyleneimine (PEI) as a water soluble polymer to bind the metals, which was followed by ultrafiltration operation performed on both laboratory and pilot scale systems. The influence of various operating parameters such as temperature, metal/polymer ratio, presence of calcium ions and pH on retention of metals and permeate flux was investigated. To investigate the possibility of selective separation of mercury and cadmium, experiments were conducted for binary solutions at different pH and loading ratios. It was seen that the retention of mercury decreased and permeate flux increased when the temperature increased. The increased pH and decreased metal/polymer ratio, loading (L), resulted in higher retention of both metals. Shapes of retention vs. pH or L curves were very similar for both metals. Retentions stay almost constant at a value very close to unity until a critical L or pH value was reached, then, R decreases almost linearly with L or pH. However, retention of cadmium was affected more than that of mercury as the pH decreased and L increased. This leads to the selective separation of mercury and cadmium. At low pH values (about 5) and at high L values (about 0.3), mercury was removed by ultrafiltration operation while almost all cadmium passed through the membrane. At pH 5.5 and cadmium/polymer ratio about 0.35 and mercury/polymer ratio about 0.39, the highest separation factor was obtained as 49.  相似文献   

2.
In polyelectrolyte-enhanced ultrafiltration (PEUF), a water-soluble anionic polyelectrolyte (in this study sodium polystyrene sulfonate or PSS) is added to hard water. The calcium and magnesium bind to the polymer which has a high enough molecular weight to be rejected by an ultrafiltration membrane. The permeate is softened water. Economically, the PSS needs to be recovered from the retentate for reuse. Three methods of recovery developed in this study were addition of NaCl, Na2CO3 or HCl to PEUF to regenerate PSS. Of the three PEUF processes considered, NaCl/PEUF as compared to Na2CO3/PEUF and HCl/PEUF provided the best scheme for the water softening process. PEUF is shown in this study to be competitive with lime softening at low flow rates. The PEUF process is more expensive than ion exchange for a stream containing only hardness ions. However, PEUF becomes nearly comparable with ion exchange for a stream containing hardness ions as well as bacteria, viruses and pyrogen. The cost comparisons are based on fully continuous operations and include treatment of waste streams from each process.  相似文献   

3.
Performance of a semi-continuous polymer enhanced ultrafiltration (PEUF) process has been investigated for the simultaneous recovery of cadmium and lead from binary mixtures. This method uses poly(acrylic acid) as water-soluble polymer to bind these metals. Experiments have taken place in a laboratory-scale system. Loading ratio (mg total metal ions/g polymer) and pH values for separation of cadmium and lead have been studied by means of preliminary experiments, analyzing their influence on permeate flux, metal rejection coefficients and separation factor.The proposed process includes three different stages: total retention of metal ions, selective separation and polymer regeneration. Operating pH values for total retention of metal ions and polymer regeneration processes are 5 and 2, respectively. Selective separation has been investigated working at an intermediate pH value. In this way, if a stream containing 12.5 ppm of each metal ion (1:1 in weight) is treated in the first stage, two different streams enriched in each metal ion are obtained in the second stage. Permeate stream is enriched in cadmium with a proportion near 5:1 in weight, and retentate is enriched in lead with a similar proportion.Finally, the three stages have been modelled successfully with a mathematical model based on conservation equations and chemical reactions taking place in solution.  相似文献   

4.
The separation of metals from aqueous streams by continuous polymer enhanced ultrafiltration (PEUF) was simulated in order to understand, evaluate and optimize the process feasibility. The model allows one to examine the influence of physico-chemical and operation variables on the metal reduction and productivity of the treated water stream. For a given metal–polymer system, the computations revealed that the most influential operation variables are the acid and base reagents expended on the process, the amount of polymer used and the recycling stream flow, which are represented by the dimensionless parameters af, pp and ro, respectively. Two of them can be free chosen while the third one is determined by a fixed treated water production and metal reduction. The selection of af and pp values should be a compromise between the costs of the reagents to regenerate the polymer and the energy spent to achieve a permeate flow. If process efficiency requirements are more exigent, higher values of af or pp are required.  相似文献   

5.
We used ultrafiltration (UF) to evaluate membrane filtration characteristics of thin stillage and determine solids and nutrient compositions of filtered streams. To obtain thin stillage, corn was fermented using laboratory methods. UF experiments were conducted in batch mode under constant temperature and flow rate conditions. Two regenerated cellulose membranes (10 and 100 kDa molecular weight cutoffs) were evaluated with the objective of retaining solids as well as maximizing permeate flux. Optimum pressures for 10 and 100 kDa membranes were 207 and 69 kPa, respectively. Total solids, ash, and neutral detergent fiber contents of input TS streams of dry grind and E-Mill processes were similar; however, fat and protein contents were different (p < 0.05). Retentate obtained from conventional thin stillage fractionation had higher mean total solids contents (27.6% to 27.8%) compared to E-Mill (22.2% to 23.4%). Total solids in retentate streams were found similar to those from commercial evaporators used in industry (25% to 35% total solids). Fat contents of retentate streams ranged from 16.3% to 17.5% for the conventional process. A 2% increment in fat concentration was observed in the E-Mill retentate stream. Thin stillage ash content was reduced 60% in retentate streams.  相似文献   

6.
曾坚贤  贺勤程  孙霞辉  郑立锋 《应用化学》2010,27(12):1444-1450
以聚丙烯酸钠为配合剂,研究了Hg(Ⅱ)、Cu(Ⅱ)和Cd(Ⅱ)混合溶液配合-超滤分离行为。考察了pH值和负载比LR对混合体系分离的影响,结果表明,pH=5适宜分离;当LR从0.01增大至2时,金属离子分离系数SHg-Cd和SHg-Cu逐渐增大,LR=2时达到最大值。在pH=5、LR=2、体积浓缩因子为15和各金属离子的初始质量浓度为30mg/L时,截留液中金属离子的质量浓度ρr,Hg、ρr,Cu和ρr,Cd分别为435.3、42.6和34.2mg/L;SHg-Cd、SHg-Cu和SCu-Cd基本不变,依次为229.3、184.3和1.2,即Hg(Ⅱ)得到选择性浓缩。浓缩液的洗涤研究结果表明,随着洗涤液体积增大,ρr,Hg基本不变,ρr,Cu和ρr,Cd分别下降至12.54和4.73mg/L。收集含Cu(Ⅱ)和Cd(Ⅱ)的各渗透液,调节LR=0.033和pH=5,浓缩16倍时,ρr,Cu从27.34mg/L升高至430.9mg/L,ρr,Cd从27.83mg/L仅升高至61.5mg/L,SCu-Cd为95.8,Cu(Ⅱ)获得选择性浓缩。  相似文献   

7.
ABSTRACT

Asymmetric ultrafiltration membranes were synthesized from locally available polysulfone and polyethersulfone polymers using aprotic solvents and organic additives by the phase inversion method. The membranes were characterized in terms of pure water permeability, separation behavior with respect to polyethylene glycols of various molecular weights and electrolytes. The suitability of using polyethyleneimine (PEI) for selective removal of calcium and magnesium salts by an ultrafiltration process was studied in terms of optimum polymer loading at reasonable permeate flux, irreversible adsorptive fouling of the macromolecular ligand on the polymer as functions of solution pH and ionic strength, and metal ion separation as a function of concentration and pressure. Direct electron microscopic observation of fresh, as well as fouled, membranes are presented.  相似文献   

8.
Micellar-enhanced ultrafiltration (MEUF), a surfactant-based separation process, is promising in removing multivalent metal ions from aqueous solutions. The micellar-enhanced ultrafiltration of cadmium from aqueous solution was studied in systems of anionic surfactant and mixed anionic/nonionic surfactants. The micelle sizes and zeta potentials were investigated by dynamic light scattering measurements. The effects of feed surfactant concentration, cadmium concentration and the molar ratio of nonionic surfactants to sodium dodecyl sulfate (SDS) on the cadmium removal efficiency, the rejection of SDS and nonionic surfactants and the permeate flux were investigated. The rejection efficiencies of cadmium in the MEUF operation were enhanced with higher SDS concentration and moderate Cd concentration. When SDS concentration was fixed at 3 mM, the optimal ranges of the molar ratios of nonionic surfactants to SDS for the removal of cadmium were 0.4–0.7 for Brij 35 and 0.5–0.7 for Triton X-100, respectively. With the addition of nonionic surfactants, the SDS dosage and the SDS concentration in the permeate were reduced efficiently.  相似文献   

9.
The micellar enhanced ultrafiltration (MEUF) of phenol in synthetic wastewater using two polysulfone spiral membranes of 6- and 10-kDa molecule weight cut-off (MWCO) and cetylpyridinium chloride (CPC) as cationic surfactant was studied. The effects on the permeate flux, permeate and retentate concentrations of phenol and CPC of various factors in the practical application of MEUF were studied, including surfactant and phenol concentrations, retentate flux, operating pressure, temperature and electrolyte. It was found that these two membranes could adsorb free phenol so the concentration of permeate phenol was lower than that of free phenol. The retentate phenol concentration kept increasing, then decreased slightly with the increase of the feed CPC concentration. Retentate flux and temperature had great effect on the performance of MEUF, and operating pressure did not. The addition of sodium carbonate (Na2CO3) could increase the retentate phenol concentration and decrease the permeate concentrations of phenol and CPC significantly.  相似文献   

10.
A semi-continuous process of polymer enhanced ultrafiltration for removal of lead and cadmium has been elaborated. This operation mode would let a better coupling between industrial and laboratory-scale processes. Basically, it includes two stages: (1) metal retention, where we can obtain a permeate stream free of heavy metals; (2) polymer regeneration, where the polymer is regenerated in order to be reused in metal retention stage. In order to work in this way, a control system of permeate and feed stream flows has been installed in a batch laboratory-scale plant. In the first place, more suitable hydrodynamic operating parameters were obtained by ultrafiltration experiments. The influence of pH has been studied to fix the pH for metal retention and polymer regeneration experiments, and the operative polymer binding capacity has been determined to know the metal amount that can be treated. A mathematical model taking into account both conservation equations and competitive reactions which occur in the medium has been established. The development of this mathematical model (which is in good agreement with experimental data) enables to estimate design parameters to dimension pilot and industrial scale installations based on this process.  相似文献   

11.
Flameless atomic absorption sepctrometry (AAS) has been applied to the investigation of the electroreduction of mercury at the glassy carbon (GC) electrode in dilute mercury(II) solution. The atomic mercury which is produced by electrolysis is found both in the electrolyte solution and on the electrode. The evaporation experiment combined with the flameless AAS clearly shows that mercury(0) deposits on the GC electrode as metallic mercury and adatoms depending strongly on the concentration of mercury(II) in the solution. The monolayer formation and underpotential deposition cannot be observed in the mercury(II)/GC electrode system.  相似文献   

12.
In the scope of achieving the separation of chiral molecules, enzyme enhanced ultrafiltration (EEUF), a new method based on polymer enhanced ultrafiltration (PEUF), utilizing apoenzymes as ligands, was developed. Benzoin was chosen as the model chiral molecule. Bovine serum albumin (BSA) and apo form of benzaldehyde lyase (BAL) (E.C. 4.1.2.38) were used as chiral ligands in PEUF and EEUF experiments, respectively. In order to bind to the target enantiomer well, the addition of ligand to the benzoin solution was followed by ultrafiltration. With the use of BSA as ligand, adaptation of PEUF for chiral target molecules and process parameter optimization was carried out; whereas, in EEUF studies the effect of ligand concentration was focused on. In PEUF experiments, although total benzoin retention values reached to 48.7% and 41.3% at pH 10, for 15% (v/v) PEG 400 and 30% (v/v) DMSO cosolvents, respectively; obtained enantiomeric excess (ee) % values were all less than 20%. In EEUF experiments, at BAL concentrations greater than 158 ppm, total benzoin retention and ee% remained constant at ca. 75% and 60%, respectively. On the other hand, at 61 ppm BAL concentration, total benzoin retention was kept at ca. 75%, but ee% decreased to ca. 30%, probably due to the nonspecific binding of benzoin to DNA and other proteins. Thus, the method developed enzyme enhanced ultrafiltration, functioned with its intended purpose effectively in chiral separation.  相似文献   

13.
Through cross-flow filtration (CFF) with a 1-kDa regenerated cellulose Pellicon 2 module, the ultrafiltration characteristics of river organic matter from Longford Stream, UK, were investigated. The concentration of organic carbon (OC) in the retentate in the Longford Stream samples increased substantially with the concentration factor (cf), reaching approximately 40 mg/L at cf 15. The results of dissolved organic carbon (DOC) and colloidal organic carbon (COC) analysis, tracking the isolation of colloids from river waters, show that 2 mg/L of COC was present in those samples and good OC mass balance (77-101%) was achieved. Fluorescence measurements were carried out for the investigation of retentate and permeate behaviour of coloured dissolved organic materials (CDOM). The concentrations of CDOM in both the retentate and permeate increased with increasing cf, although CDOM were significantly more concentrated in the retentate. The permeation model expressing the correlation between log[CDOM] in the permeate and logcf was able to describe the permeation behaviour of CDOM in the river water with regression coefficients (r(2)) of 0.94 and 0.98. Dry weight analysis indicated that the levels of organic colloidal particles were from 49 to 71%, and between 29 and 51% of colloidal particles present were inorganic. COC as a percentage of DOC was found to be 10-16% for Longford Stream samples.  相似文献   

14.
Asymmetrical flow field-flow fractionation (AF4) with sequential on-line UV/visible and fluorescence detectors was used to investigate the composition of dissolved organic matter (DOM) in permeate and retentate fractions isolated by tangential flow ultrafiltration (TFF) at various concentration factors (i.e. ratio of initial volume to the retentate volume; CF). The permeation coefficient model, which defines the log-log relationship between DOM in the permeate fractions and CFs, described the permeation behaviour of DOM with regression coefficients r 2 > 0.99. The dominance of higher-molecular weight retentate chromophoric DOM (CDOM) observed in TFF was consistent with the results of AF4. The weight-averaged molecular weights (M w) of the integral permeate and retentate at CF = 20 were determined to be 1160 and 2320 by AF4, respectively, while their molecular weight distributions (MWD) were centered at 1120 and 1600 Da. M w, MWD, and aromaticity (i.e. ratio of absorbance at 250 and 365 nm; E2/E3) in permeate fractions were altered significantly during the early stages of TFF (CF < 9). These changes, however, were not evident in excitation-emission matrix fluorescence properties as determined using the parallel factor analysis model. The application of AF4 to TFF fractions suggests that the choice of CF may have an important impact on the size distribution and aromaticity of permeate fractions, whereas fluorescence properties appear insensitive to concentration factor. These results suggest that the choice of CF is crucial only in the study of the permeate fraction where similar CF (i.e. > 9) should be used to obtain meaningful comparison among samples.  相似文献   

15.
Summary: A case-study using macromolecular metal complexes is described. The results of a process named Polymer Assisted Ultrafiltration (PAUF) for ion removal from various types of waters is reported. The water soluble polymers such as polyetilenimine (PEI), polyacrylic acid (PAA), polyacrylic acid sodium salt (PAASS) and poly(dimethylamine–co–epichlorohydrin–co–ethylenediamine) (PDEHED) as chelating agents, the Cu2+ as model ion and five ultrafiltration membranes have been used. The complexing agents were previously tested to establish the binding capacity and the best operating conditions for the process. Among the tested polymers the PEI appeared the most interesting one because its binding mechanism does not involve a counter ion release. It was tested in the simulation of wastewaters treatment containing the Cu2+ ion chelated with citric acid; this is a problem of interest in the recycling of water from soil washing operations. The polyethylenimine quantitatively bound the copper-citrate chelate at pH 5.5 and the three component complex was separated by UF membranes producing a permeate with very low metal concentration. The polymer regeneration was carried out with good results by operating with the diafiltration method. The copper ion present in the diafiltration permeate in a form chelated with citric acid was recovered by oxidising the citrate in a membrane photoreactor. The positive results of the described case-study show that Macromolecule-Metal Complexes play a key role for running effectively and selectively the PAUF process for removing metal ions from various type of waters.  相似文献   

16.
A tubular ultrafiltration model which couples the formation of a cake layer on the membrane surface and the presence of a polarized layer above the cake has been developed, which contains a single constant and the cake layer resistance to be evaluated from experiments. In the model, the tangential flow of feed material is assumed to induce a shearing effect on the cake layer resulting in the re-entrainment the particles into the bulk stream. The validity of the model over a range of cross-flow velocity, transmembrane pressure (TMP) and solute concentration was confirmed using experimental permeate fluxes obtained from the ultrafiltration of polyethylene glycol. Excellent prediction is observed for solute concentrations above some critical value at which a well developed cake layer is believed to have been formed. For concentrations below this value, the model under predicted the steady-state permeate fluxes. By ignoring the presence of the polarized layer, the model always over predict the dynamic fluxes.  相似文献   

17.
Abstract

Lead, cadmium and mercury were determined in sediments and mussels, and the ability of these indicators to record metal variations in coastal marine environment is described in this work. The results of an extended investigation of the status of three gulfs at Northern Greece are given, regarding the content of these metals in surface sediments and Mytilus galloprovincialis. The samples were collected during a four-year period. The total concentration of the above heavy metals was determined after digestion of the samples by suitable mixtures of acids, including nitric, perchloric and hydrofluoric acid. The digestion was carried out in a steel pressurised bomb with closed teflon vessels. Lead and cadmium were determined by means of electrothermal atomic absorption spectrometry (ETAAS), and mercury by cold vapour atomic absorption spectrometry (CVAAS). The results were statistically evaluated by analysis of variance, and emphasis was given to annual, seasonal and spatial sources of variation. The annual changes during the last four years and the spatial distribution of heavy metals load is also discussed.  相似文献   

18.
Naphthenic acids are naturally occurring organics in produced waters from oil recovery operations. In principle, these contaminants can be removed using micellar-enhanced ultrafiltration (MEUF), which is an effective technique for the removal of organic contaminants from water streams. In this work, we show that the amphiphilic nature of the naphthenic acids contributed to decreasing the critical micelle concentration (CMC) of cetylpyridinium chloride (CPC), a widely used surfactant in MEUF. This reduction in CMC allowed a decrease in the CPC dosage required to attain certain removal of the organics, and hence, improved the performance of traditional MEUF as a result of reducing back contamination and potential fouling of the membrane. The effect of CPC feed concentration, and the concentration and carbon number of the naphthenic acids on permeate flux, recovery ratio and percent rejection of CPC and naphthenic acids were explored over a range of trans-membrane pressure. The MEUF setup employed hydrophilic polyacrylonitrile (PAN) hollow fiber membrane with 13 kDa MWCO, since it allowed for high permeate flux and contaminant rejection.  相似文献   

19.
Electrodeposition techniques for the direct determination of lead and cadmium in sea water at the natural pH and in the presence of dissolved oxygen are examined. Anodic stripping voltammetry, at either the hanging mercury drop electrode or glassy carbon thin film electrode, is suitable for the determination of labile lead and cadmium. The presence of dissolved oxygen increases the height of the lead wave with a shift to more negative potentials. A more versatile technique is in situ deposition of labile metals on a mercury-coated graphite tube electrode. The mercury film, deposited in the laboratory, is stable on the dried tubes which are used later for field electrodeposition. The deposited metals are determined by electrothermal atomic absorption spectrometry.  相似文献   

20.
The reproducibility of Tessier's extractions and the total content of cadmium, chromium, copper, iron, manganese, lead, zinc and calcium in a river sediment have been evaluated. The metals were determined with AAS in flame and in graphite furnaces. The accuracy of the dissolution procedures was evaluated using a reference material (RM) BCR 145; none of the methods applied proved optimal for all the metals determined. The concentrations of metals extracted by the various reagents were characterized by good reproducibility on species bonded to the carbonates, to iron and manganese oxides and in the residual; precision was lower in the other cases. The sequential extractions also showed a satisfactory mass balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号