首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The supercurrent through a double Aharonov–Bohm interferometer formed by parallel-coupled four quantum dots is investigated theoretically. The possibility of controlling the supercurrent of the system is explored by tuning the interdot coupling, dot energy levels, and magnetic flux treading the ring connecting dots and leads. Whether the supercurrent sign can be changed depends not only on the magnetic flux but also on the quantum dot energy levels. By tuning the quantum dot energy levels, the behavior of the supercurrent shows swap effects, which might be used to design a qubit. It is also found that the oscillation period of the supercurrent with respect to the magnetic flux depends on the ratio of the two parts fluxes.  相似文献   

2.
We study the conductance through a ring described by the Hubbard model (such as an array of quantum dots), threaded by a magnetic flux and subject to Rashba spin-orbit coupling (SOC). We develop a formalism that is able to describe the interference effects as well as the Kondo effect when the number of electrons in the ring is odd. In the Kondo regime, the SOC reduces the conductance from the unitary limit, and, in combination with the magnetic flux, the device acts as a spin polarizer.  相似文献   

3.
We present novel resonant phenomena through parallel non-coupled double quantum dots (QDs) embedded in each arm of an Aharonov-Bohm (AB) ring with magnetic flux passing through its center. The electron transmission through this AB ring with each QD formed by two short-range potential barriers is calculated using a scattering matrix at each junction and a transfer matrix in each arm. We show that as the magnetic flux modulates, a distortion of the grid-like square transmission occurs and an anti-crossing of the resonances appears. Hence, the modulation of magnetic flux in this system can have an equivalent effect to the control of inter-dot coupling between the two QDs.  相似文献   

4.
Spin-dependent electronic transport through an open multiple-quantum-dot ring threaded by a magnetic flux is theoretically investigated by using the single particle Green?s function method. By introducing local Rashba spin–orbit interaction on an individual quantum dot and local magnetic moments on two of other quantum dots, we calculate the spin-polarization in the output lead. We find the spin-polarization can be tuned by manipulating magnetic moments, adjusting magnetic flux and setting the Rashba spin–orbit strength. It is also shown the system can operate as an efficient spin-inverter when the structure is adjusted properly. The analysis can be utilized in designing optimized nanodevices.  相似文献   

5.
We analyse the transport properties of a coupled double quantum dot (DQD) device with one of the dots (QD1) coupled to metallic leads and the other (QD2) embedded in an Aharonov-Bhom (A-B) ring by means of the slaveboson mean-field theory. It is found that in this system, the Kondo resonance and the Fano interference exist simultaneously, the enhancing Kondo effect and the increasing hopping of the QD2-Ring destroy the localized electron state in the QD2 for the QD1-leads, and accordingly, the Fano interference between the DQD-leads and the QD1-leads are suppressed. Under some conditions, the Fano interference can be quenched fully and the single Kondo resonance of the QD1-leads comes into being. Moreover, when the magnetic flux of the A-B ring is zero, the influence of the parity of the A-B ring on the transport properties is very weak, but this influence becomes more obvious with non-zero magnetic flux. Thus this model may be a candidate for future device applications.  相似文献   

6.
Spin-polarized transport through an Aharonov–Bohm ring containing two quantum dots (QDs) in each of its arms is studied by using the nonequilibrium Green’s function technique. We take both the Rashba spin-orbit interaction that exists in one of the QDs, and an inhomogeneous magnetic flux penetrating through the ring, into consideration. It is found that a 100% spin-polarized current can be driven out of the QDs ring, and both the spin directions and the magnitude of the outgoing current can be controlled. The origin of the pure spin-up or spin-down current is interpreted in terms of the spin accumulation in the QDs. This device is realizable by presently available technologies and can be used as a spin filter.  相似文献   

7.
We study the conductance through finite Aharonov-Bohm rings of interacting electrons weakly coupled to non-interacting leads at two arbitrary sites. This model can describe an array of quantum dots with a large charging energy compared to the interdot overlap. As a consequence of the spin-charge separation, which occurs in these highly correlated systems, the transmittance is shown to present pronounced dips for particular values of the magnetic flux piercing the ring. We analyze this effect by numerical and analytical means and show that the zero-temperature equilibrium conductance in fact presents these striking features which could be observed experimentally.  相似文献   

8.
The supercurrent through an Aharonov-Bohm interferometer containing two parallel quantum dots connected with two superconductor leads is investigated theoretically. The possibility of controlling the supercurrent is explored by tuning the quantum dot energy levels and the total magnetic flux. By tuning the energy levels, both quantum dots can be in the on-resonance or off-resonance states, and thus the optimal modulation of the supercurrent can be achieved. The supercurrent sign does not change by simply varying the quantum dot energy levels. However, by tuning the magnetic flux, the supercurrent can oscillate from positive to negative, which results in the π-junction transition.  相似文献   

9.
We present a theoretical study of the conductance in an Aharonov-Bohm interferometer containing two coupled quantum dots. The interdot tunneling divides the interferometer into two coupled subrings, where opposite magnetic fluxes are threaded separately while the net flux is kept zero. Using the Green function technique we derive the expression of the linear conductance. It is found that the Aharonov-Bohm effect still exists, and when the level of each dot is aligned, the exchange of the Fano and Breit-Wigner resonances in the conductance can be achieved by tuning the magnetic flux. When the two levels are mismatched the exchange may not happen. Further, for some specific asymmetric systems where the coupling strengths between the two dots and the leads are not equal, the flux can change the Fano resonance into an antiresonance, which is absent in symmetric systems.  相似文献   

10.
We present numerical investigations of the transmission properties of electrons in a normal quantum wire tangentially attached to a superconductor ring threaded by magnetic flux. A point scatterer with a δ -function potential is placed at node to model scattering effect. We find that the transmission characteristics of electrons in this structure strongly depend on the normal or superconducting state of the ring. The transmission probability as a function of the energy of incident electrons, in the case of a superconductor ring threaded by one quantum magnetic flux, emerges one deep dip, imposed upon the first broad bump in spectrum. This intrinsic conductance dip originates from the superconductor state of the ring. When increasing the magnetic flux from one quantum magnetic flux to two, the spectrum shifts toward higher energy region in the whole. This conductance dip accordingly shifts and appears in the second bump. In the presence of a point-scatterer at the node, the spectrum is substantially modified. Based on the condition of the formation of the standing wave functions in the ring and the broken of the time-reserve symmetry of Schr?dinger equation after switching magnetic flux, the characteristics of transmission of electrons in this structure can be well understood. Received 6 November 2001  相似文献   

11.
The charge transport and the noise of a quantum wire network, made of three semi-infinite external leads attached to a ring crossed by a magnetic flux, are investigated. The system is driven away from equilibrium by connecting the external leads to heat reservoirs with different temperatures and/or chemical potentials. The properties of the exact scattering matrix of this configuration as a function of the momentum, the magnetic flux and the transmission along the ring are explored. We derive the conductance and the noise, describing in detail the role of the magnetic flux. In the case of weak coupling between the ring and the reservoirs, a resonant tunneling effect is observed. We also discover that a non-zero magnetic flux has a strong impact on the usual Johnson–Nyquist law for the pure thermal noise at small temperatures.  相似文献   

12.
张颖  肖景林 《发光学报》2007,28(3):321-324
利用量子波导理论研究三臂环中的持续电流.结果表明,输运电流存在时,不含磁场且上、下臂等长的三臂环中仍可以有持续电流出现,而且上臂和下臂中的持续电流是相同的.三臂环的各臂长不等时,三个臂中的持续电流各不相同.我们还发现,即使三臂环和单环的上、下臂比值一样,两个环中的持续电流也明显不同.  相似文献   

13.
Quantum devices and computers will need operational units in different architectural configurations for their functioning. The unit should be a simple "quantum toy," an easy to handle superposition state. Here such a novel unit of quantum mechanical flux state (or persistent current) in a conducting ring with three ferromagnetic quantum dots is presented. The state is labeled by the two directions of the persistent current, which is driven by the spin chirality of the dots, and is controlled by the spin (the spin Josephson effect). It is demonstrated that by the use of two connected rings, one can carry out unitary transformations on the input flux state by controlling one spin in one of the rings, enabling us to prepare superposition states. The flux is shown to be a quantum operation gate, and may be useful in quantum computing.  相似文献   

14.
The Aharonov-Bohm effect is measured in a four-terminal open ring geometry. Two quantum dots are embedded in the structure, one in each of the two interfering paths. The number of electrons in the two dots can be controlled independently. The transmission phase is measured as electrons are added to or taken away from the individual quantum dots. Although the measured phase shifts are in qualitative agreement with theoretical predictions, the phase evolution exhibits unexpected dependence on the magnetic field. Phase lapses are found only in certain ranges of the magnetic field.  相似文献   

15.
We study the spin-dependent electron transport through parallel coupled quantum dots (QDs) embedded in an Aharonov-Bohm (AB) interferometer connected asymmetrically to leads. Both the Rashba spin-orbit interaction (RSOI) inside one of the QDs, which acquires a spin-dependent phase factor in the tunnel-coupling strengths when the electrons flow through this arm of the AB ring, and an inhomogeneous magnetic flux penetrating the structure are taken into account. Due to the existence of the RSOI induced phase factor, magnetic flux and the interdot coupling, a spin-dependent Fano effect will arise. We pay special attention on the properties of the local density of states and the conductance when the electron phase factor is close to integer multiplies of a quantum of flux. It is shown that the roles and lifetimes of the bonding and antibonding states of the two spin components are very sensitive to the phase factor and can be well controlled accordingly. This manipulation of the spin degree of freedom relies on the existence of RSOI but can be fulfilled even when its strength is very weak. The proposed structure can be easily realized with present technology and might be of practical applications in spintronics devices and quantum computing.  相似文献   

16.
Giant magnetoresistance (GMR) due toremotespin dependent scattering of electrons has been observed in an electrochemically synthesized structure consisting of a two-dimensional, quasi-periodic array of nickel dots (diameter ∼100 Å) overlayed with a thin copper layer. Current flows exclusively in the copper layer, but the electrons scatter from the magnetic moments on the remote, underlying nickel quantum dots. Since the scattering cross-section depends on the magnetization of the dots, the resistance of the structure can be altered with a magnetic field which then gives rise to the GMR. The magnetoresistance is about 3% of the zero-field resistance up to a magnetic flux density of 2 tesla at room temperature.  相似文献   

17.
We studied the changes in the superconducting properties of Nb films due to an array of Ni dots used as collective pinning sites. To determine the pinning mechanism, thin Ag layers of varying thicknesses were deposited on the Ni dots prior to the Nb film deposition. The Ag deposited on the pinning dots has little effect on the collective pinning phenomena, which implies that the main pinning mechanism is of magnetic origin.Received: 3 February 2004, Published online: 31 August 2004PACS: 74.25.Qt Vortex lattices, flux pinning, flux creep - 74.78.-w Superconducting films and low-dimensional structures  相似文献   

18.
Electron transport properties of a triple-terminal Aharonov-Bohm interferometer are theoretically studied. By applying a Rashba spin-orbit coupling to a quantum dot locally, we find that remarkable spin polarization comes about in the electron transport process with tuning the structure parameters, i.e., the magnetic flux or quantum dot levels. When the quantum dot levels are aligned with the Fermi level, there only appear spin polarization in this structure by the presence of an appropriate magnetic flux. However,in absence of magnetic flux spin polarization and spin separation can be simultaneously realized with the adjustment of quantum dot levels, namely, an incident electron from one terminal can select a specific terminal to depart from the quantum dots according to its spin state.  相似文献   

19.
The present work is dedicated to the time evolution of excitation of a quantum ring in external electric and magnetic fields. Such a ring of mesoscopic dimensions in an external magnetic field is known to exhibit a wide variety of interesting physical phenomena. We have studied the dynamics of the single electron quantum ring in the presence of a static magnetic field and a combination of delayed half-cycle pulse pair. Detailed calculations have been worked out and the impact on dynamics by variation in the ring radius, intensity of external electric field, delay between the two pulses, and variation in magnetic field have been reported. A total of 19 states have been taken and the population transfer in the single electron quantum ring is studied by solving the time-dependent Schrödinger equation (TDSE), using the efficient fourth-order Runge–Kutta method. Many interesting features have been observed in the transition probabilities with the variation of magnetic field, delay between pulses and ring dimensions. A very important aspect of the present work is the persistent current generation in a quantum ring in the presence of external magnetic flux and its periodic variation with the magnetic flux, ring dimensions and pulse delay.  相似文献   

20.
白继元  贺泽龙  杨守斌 《物理学报》2014,63(1):17303-017303
利用非平衡格林函数方法,理论研究每臂中嵌有一个平行耦合双量子点分子的A-B干涉仪(平行耦合双量子点分子A-B干涉仪)的电荷及其自旋输运性质.无外磁场时,与每臂中嵌有一个量子点的A-B干涉仪相比较,平行耦合双量子点分子A-B干涉仪中电子隧穿变得更加容易发生.当平行耦合双量子点分子A-B干涉仪中引入外磁场时,能够在电导能谱中观察到一个Fano共振和一个反共振,这两种输运状态在磁场取适当数值时能够同时消失.此外,通过调节左右两电极间的偏压、磁通和Rashba自旋轨道相互作用,可以对体系自旋输运进行调控.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号