首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The well-known tetradentate ligand 1,2-bis(pyridine-2-carboxamido)benzenate(2-), (bpb)2-, and its 4,5-dichloro analogue, (bpc)2-, are shown to be "noninnocent" ligands in the sense that in coordination compounds they can exist in their radical one- and diamagnetic two-electron-oxidized forms (bpbox1)- and (bpbox2)0 (and (bpcox1)- and (bpcox2)0), respectively. Photolysis of high-spin [(n-Bu)4N][FeIII(bpb)(N3)2] and its (bpc)2- analogue in acetone solution at room temperature generates the diamagnetic dinuclear complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(N3)2] and its (bpc)2- analogue; the corresponding cyano complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2] has been prepared via N3- substitution by CN-. Photolysis in frozen acetonitrile solution produces a low-spin ferric species (S = 1/2) which presumably is [FeIII(bpbox2)(N)(N3)]-, as has been established by EPR and M?ssbauer spectroscopy. The mononuclear complexes [(n-Bu)4N][FeIII(bpb)(CN2)] (low spin), [Et4N][CoIII(bpb)(CN)2] and Na[CoIII(bpc)-(CN)2].3CH3OH can be electrochemically or chemically one-electron-oxidized to give [FeIII(bpbox1)(CN)2]0 (S = 0), [CoIII(bpbox1)(CN)2]0 (S = 1/2), and [CoIII(bpcox1)(CN)2]0 (S = 1/2). All complexes have been characterized by UV-vis, EPR, and M?ssbauer spectroscopy, and their electro- and magnetochemistries have been studied. The crystal structures of [(n-Bu)4N][FeIII(bpb)(N3)2].1/2C6H6CH3, Na[FeIII(bpb)(CN)2], Na[CoIII(bpc)(CN)2].3CH3OH, [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2], and [(n-Bu)4N][FeIV2(mu-N)(bpb)(N3)2] have been determined by single-crystal X-ray diffraction.  相似文献   

2.
The reduction of [P(2)N(2)]NbCl (where [P(2)N(2)] = PhP(CH(2)SiMe(2)NSiMe(2)CH(2))(2)PPh) with KC(8) under a dinitrogen atmosphere generates the paramagnetic dinuclear dinitrogen complex ([P(2)N(2)]Nb)(2)(mu-N(2)) (2). Complex 2 has been characterized crystallographically and by EPR spectroscopy. Variable-temperature magnetic susceptibility measurements indicate that 2 displays antiferromagnetic coupling between two Nb(IV) (d(1)) centers. A density functional theory calculation on the model complex [(PH(3))(2)(NH(2))(2)Nb](2)(mu-N(2)) was performed. Thermolysis of ([P(2)N(2)]Nb)(2)(mu-N(2)) in toluene generates the paramagnetic bridging nitride species where one N atom of the dinitrogen ligand inserts into the macrocycle backbone to form [P(2)N(2)]Nb(mu-N)Nb[PN(3)] (3) (where [PN(3)] = PhPMe(CHSiMe(2)NSiMe(2)CH(2)P(Ph)CH(2)SiMe(2)NSiMe(2)N)). Complex 3 has been characterized in the solid state as well as by variable-temperature magnetic susceptibility measurements. The reaction of ([P(2)N(2)]Nb)(2)(mu-N(2)) with phenylacetylene displaces the dinitrogen fragment to generate a paramagnetic eta(2)-alkyne complex, [P(2)N(2)]Nb(eta(2)-HCCPh) (4).  相似文献   

3.
The compounds [K((mu-N(SiMe3)C(Ph))2CH)(thf)2]infinity 1, [K(mu-N(SiMe3)C(Ph)C(H)C(Ph)NH)L]2 [L = (thf)2 2, tmen 3], [K(mu-NSi(Me)2C(Ph)C(H)C(Ph)N)(thf)3]2 4 and [K(N(H)C(Ph))2CH](thf)0.5 5 have been prepared from K[(N(SiMe3)C(Ph))2CH] and the X-ray structures of 1-4 are reported.  相似文献   

4.
A tungsten neopentylidene complex has been found to decompose to yield a heterochiral dimer that contains a W=W double bond and no bridging ligands. Decompositions of related bisalkoxide complexes also yield compounds that contain an "unsupported" W=W double bond, while a sample of [Mo(NAr)(CH2-t-Bu)(OC6F5)]2 has been found to be a homochiral species related to [W(NAr)(CH2-t-Bu)(OC6F5)]2.  相似文献   

5.
The new [N(CH(3))(4)][WSF(5)] salt was synthesized by two preparative methods: (a) by reaction of WSF(4) with [N(CH(3))(4)][F] in CH(3)CN and (b) directly from WF(6) using the new sulfide-transfer reagent [N(CH(3))(4)][SSi(CH(3))(3)]. The [N(CH(3))(4)][WSF(5)] salt was characterized by Raman, IR, and (19)F NMR spectroscopy and [N(CH(3))(4)][WSF(5)]·CH(3)CN by X-ray crystallography. The reaction of WSF(4) with half an aliquot of [N(CH(3))(4)][F] yielded [N(CH(3))(4)][W(2)S(2)F(9)], which was characterized by Raman and (19)F NMR spectroscopy and by X-ray crystallography. The WSF(5)(-) and W(2)S(2)F(9)(-) anions were studied by density functional theory calculations. The novel [W(2)OSF(9)](-) anion was observed by (19)F NMR spectroscopy in a CH(3)CN solution of WOF(4) and WSF(5)(-), as well as CH(3)CN solutions of WSF(4) and WOF(5)(-).  相似文献   

6.
A multicomponent reaction involving ethylenediaminepalladium(II), 2-pyrimidinol derivatives (L) [L=2-pyrimidinol (a); 4-methyl-2-pyrimidinol (b); 4,6-dimethyl-2-pyrimidinol (c)] and 4,7-phenanthroline (4,7-phen) leads to the formation of heterotopic cyclic metallamacrocycles of the type [Pdn(en)n(mu-N,N'-L)m(mu-N,N'-4,7-phen)n-m](2n-m)+ [n=3, m=1 (3); n=4, m=2 (4); n=6, m=4 (5)]. These species can be obtained by different reaction pathways, including: (i) reaction of ethylenediaminepalladium(ii), L and 4,7-phen building blocks and (ii) reaction of the homotopic species [Pd4(en)4(mu-N,N'-L)4]4+ (1) and [Pd3(en)3(mu-N,N'-4,7-phen)3]6+ (2). The resulting heterotopic metallamacrocycles have been characterised by 1D and 2D 1H NMR spectroscopy. Additionally, species 3c and 4a have been studied by X-ray crystallography. The former one contains almost isosceles triangles of [Pd3(en)3(mu-N,N'-4,6-dimethyl-2-pyrimidinolate)(mu-N,N[prime or minute]-4,7-phen)2]5+ formulation, exhibiting a pinched-cone conformation. 4a contains a tetranuclear parallelogram [Pd4(en)4(mu-N,N'-2-pyrimidinolate)2(mu-N,N'-4,7-phenanthroline)2]6+, exhibiting a 1,3-alternate conformation. The host-guest properties of the here reported species have been studied, showing that they are able to interact with cationic as well as with anionic species.  相似文献   

7.
The diiron mu-nitride complexes, {L3FeII(mu-N)FeIIL3}- and L3FeIII(mu-N)FeIIL3, heterolytically activate hydrogen (1 atm) at ambient temperature in solution (L3 = [PhB(CH2PPh2)3]-). These transformations lead to structurally unique {L3FeII(mu-NH)(mu-H)FeIIL3}- and L3FeIII(mu-NH)(mu-H)FeIIL3 products. X-ray data establish a marked reduction in the Fe-Fe distance upon H2 uptake, and spectroscopic data establish both FeIIFeII species to be diamagnetic, whereas the FeIIIFeII species, L3FeIII(mu-N)FeIIL3 and L3FeIII(mu-NH)(mu-H)FeIIL3, populate doublet ground states with thermally accessible higher spin states.  相似文献   

8.
The vibrational and electronic structure of the bis(mu-nitrido) bridged complex [V(N{N"}2)(mu-N)]2 (1) (where [N{N"}2](2-)=[(Me3Si)N{CH(2)CH(2)N(SiMe3)}2](2-)) is analyzed. Assignment of the five modes of the V(2)(mu-N)2 core is based on (15)N isotope shifts and a DFT calculation on the calculated structure I which is an exact reproduction of 1. The three Raman active modes of the planar V(2)(mu-N)2 core are found in the Raman spectrum whereas the two IR allowed vibrations are identified in the infrared spectrum. Furthermore, the electronic structure of is described which complements earlier theoretical studies on the reaction pathway leading to 1(V. M. E. Bates, G. K. B. Clentsmith, F. G. N. Cloke, J. C. Green, H. D. L. Jenkin, Chem. Commun., 2000, 927). Based on the MO scheme of I the UV-vis transitions of 1 are assigned.  相似文献   

9.
Hydrosilylation of the ditantalum dinitrogen complex ([NPN]Ta)2(mu-H)2(mu-eta1:eta2-N2) proceeds via an addition reaction to produce ([NPN]TaH)(mu-H)2(mu-eta1:eta2-N-NSiH2Bu)(Ta[NPN]), which contains a new N-Si bond and a terminal tantalum hydride; this species has been characterized by NMR spectroscopy and X-ray diffraction. This complex undergoes reductive elimination of H2 followed by N-N bond cleavage to generate a new intermediate with the formula ([NPN]TaH)(mu-N)(mu-NSiH2Bu)(Ta[NPN]); confirmation of N-N bond cleavage is evident from the 15N-labeled isotopomer that displays an absence of 15N-15N scalar coupling in the 15N NMR spectrum. In the presence of additional silane, a second hydrosilylation and reductive elimination results to give ([NPN]Ta)2(mu-NSiH2Bu)2, a species in which each dinitrogen-derived N atom has been converted to a bridging silylimide ligand. This latter complex displays C2h symmetry both in solution and in the solid state.  相似文献   

10.
The heterocumulenes carbon dioxide (CO(2)), carbonyl sulfide (OCS), and carbon disulfide (CS(2)) were treated with bis(2,2,5,5-tetramethyl-2,5-disila-1-azacyclopent-1-yl)tin {[(CH(2))Me(2)Si](2)N}(2)Sn, an analogue of the well-studied bis[bis(trimethylsilyl)amido]tin species [(Me(3)Si)(2)N](2)Sn, to yield an unexpectedly diverse product slate. Reaction of {[(CH(2))Me(2)Si](2)N}(2)Sn with CO(2) resulted in the formation of 2,2,5,5-tetramethyl-2,5-disila-1-oxacyclopentane, along with Sn(4)(μ(4)-O){μ(2)-O(2)CN[SiMe(2)(CH(2))(2)]}(4)(μ(2)-N═C═O)(2) as the primary organometallic Sn-containing product. The reaction of {[(CH(2))Me(2)Si](2)N}(2)Sn with CS(2) led to formal reduction of CS(2) to [CS(2)](2-), yielding [{[(CH(2))Me(2)Si](2)N}(2)Sn](2)CS(2){[(CH(2))Me(2)Si](2)N}(2)Sn, in which the [CS(2)](2-) is coordinated through C and S to two tin centers. The product [{[(CH(2))Me(2)Si](2)N}(2)Sn](2)CS(2){[(CH(2))Me(2)Si](2)N}(2)Sn also contains a novel 4-membered Sn-Sn-C-S ring, and exhibits a further bonding interaction through sulfur to a third Sn atom. Reaction of OCS with {[(CH(2))Me(2)Si](2)N}(2)Sn resulted in an insoluble polymeric material. In a comparison reaction, [(Me(3)Si)(2)N](2)Sn was treated with OCS to yield Sn(4)(μ(4)-O)(μ(2)-OSiMe(3))(5)(η(1)-N═C═S). A combination of NMR and IR spectroscopy, mass spectrometry, and single crystal X-ray diffraction were used to characterize the products of each reaction. The oxygen atoms in the final products come from the facile cleavage of either CO(2) or OCS, depending on the reacting carbon dichalogenide.  相似文献   

11.
A series of sterically varied aryl alcohols H-OAr [OAr = OC6H5 (OPh), OC6H4(2-Me) (oMP), OC6H3(2,6-(Me))2 (DMP), OC6H4(2-Pr(i)) (oPP), OC6H3(2,6-(Pr(i)))2 (DIP), OC6H4(2-Bu(t)) (oBP), OC6H3(2,6-(Bu(t)))2 (DBP); Me = CH3, Pr(i) = CHMe2, and Bu(t) = CMe3] were reacted with LiN(SiMe3)2 in a Lewis basic solvent [tetrahydrofuran (THF) or pyridine (py)] to generate the appropriate "Li(OAr)(solv)x". In the presence of THF, the OPh derivative was previously identified as the hexagonal prismatic complex [Li(OPh)(THF)]6; however, the structure isolated from the above route proved to be the tetranuclear species [Li(OPh)(THF)]4 (1). The other "Li(OAr)(THF)x" products isolated were characterized by single-crystal X-ray diffraction as [Li(OAr)(THF)]4 [OAr = oMP (2), DMP (3), oPP (4)], [Li(DIP)(THF)]3 (5), [Li(oBP)(THF)2]2, (6), and [Li(DBP)(THF)]2, (7). The tetranuclear species (1-4) consist of symmetric cubes of alternating tetrahedral Li and pyramidal O atoms, with terminal THF solvent molecules bound to each metal center. The trinuclear species 5 consists of a six-membered ring of alternating trigonal planar Li and bridging O atoms, with one THF solvent molecule bound to each metal center. Compound 6 possesses two Li atoms that adopt tetrahedral geometries involving two bridging oBP and two terminal THF ligands. The structure of 7 was identical to the previously reported [Li(DBP)(THF)]2 species, but different unit cell parameters were observed. Compound 7 varies from 6 in that only one solvent molecule is bound to each Li metal center of 7 because of the steric bulk of the DBP ligand. In contrast to the structurally diverse THF adducts, when py was used as the solvent, the appropriate "Li(OAr)(py)x" complexes were isolated as [Li(OAr)(py)2]2 (OAr = OPh (8), oMP (9), DMP (10), oPP (11), DIP (12), oBP (13)) and [Li(DBP)(py)]2 (14). Compounds 8-13 adopt a dinuclear, edge-shared tetrahedral complex. For 14, because of the steric crowding of the DBP ligand, only one py is coordinated, yielding a dinuclear fused trigonal planar arrangement. Two additional structure types were also characterized for the DIP ligand: [Li(DIP)(H-DIP)(py)]2 (12b) and [Li2(DIP)2(py)3] (12c). Multinuclear (6,7Li and 13C) solid-state MAS NMR spectroscopic studies indicate that the bulk powder possesses several Li environments for "transitional ligands" of the THF complexes; however, the py adducts possess only one Li environment, which is consistent with the solid-state structures. Solution NMR studies indicate that "transitional" compounds of the THF precursors display multiple species in solution whereas the py adducts display only one lithium environment.  相似文献   

12.
Reactions of metal-metal bonded homobimetallic (Pd(2)) and heterobimetallic (PtPd) complexes, supported by a P,P'-bridging-bis(P,N-chelating) coordination mode of the potentially hexadentate ligand 1,1-bis[di(o-N,N-dimethylanilinyl)phosphino]methane (dmapm), with CO, diethylacetylenedicarboxylate (DEAD), and thiols (RSH) in CH(2)Cl(2) are described. At room temperature, rac-Pd(2)Cl(2)(mu-N,P:P',N'-dmapm) gives the stable complexes Pd(2)Cl(2)(mu-CO)(2)(mu-P:P'-dmapm) and PdCl(eta2-DEAD)(mu-P:P',N-dmapm)PdCl (which is fluxional in solution), while rac-PtPdCl(2)(mu-N,P:P',N'-dmapm) disproportionates to PtCl(2)(P,P'-dmapm) and Pd metal, although at low temperature intermediate carbonyl species are detected in the CO reaction. The reactions with thiols in the presence of triflic acid (HOTf) generate rac-[MPdCl(2)(mu-SR)(mu-N,P:P',N'-dmapm)][OTf] and H(2) for both M = Pt and Pd. In CH(2)Cl(2), PdX(2)(dmapm) species (X = halide or CN) exist as equilibrium mixtures of P,P'- and P,N-ligated forms. For X = Cl, the P,P'-P,N equilibrium is governed by DeltaH degrees = -5.5 +/- 0.5 kJ mol(-1) and DeltaS degrees = 10 +/- 1 J mol(-1) K(-1), and the ring-strain energy within the P,P'-isomer is approximately 32 kJ mol(-1); the equilibrium increasingly favors the P,N-form with X = CN > I > Br > Cl. The solid-state structures of rac-[PtPdCl(2)(mu-SEt)(mu-N,P:P',N'-dmapm)][OTf] and PdCl(2)(P,N-dmapm) are presented; the latter contains both bound and free N- and P-atoms of identical types in the same molecule and permits an assessment of sigma- and pi-bonding between these atoms and Pd.  相似文献   

13.
Reaction between the Os(VI)-nitrido complex, trans-[OsVI(tpy)(Cl)2(N)]PF6 (tpy = 2,2':6',2' '-terpyridine), and ammonia (NH3) under N2 in dry CH3CN gives the mu-1,3-azido bridged [OsII-N3-OsII]- dimer, trans,trans-NH4[(tpy)(Cl)2OsII(N3)OsII(Cl)2(tpy)]. It undergoes air oxidation to give the [OsIII-N3-OsIII]+ analogue, trans,trans-[(tpy)(Cl)2OsIII(N3)OsIII(Cl)2(tpy)]PF6 ([OsIII-N3-OsIII]PF6), which has been isolated and characterized. The structural formulation as a mu-1,3-N3 bridged complex has been established by infrared and 15N NMR measurements on the 15N-labeled forms, [OsIII-14N=15N=14N-OsIII]+, [OsIII-15N=14N=15N-OsIII]+, and [OsIII-15N=15N=15N-OsIII]+. Cyclic voltammetric measurements in 0.2 M Bu4NPF6/CH3CN reveal the existence of five chemically reversible waves from 1.40 to -0.12 V for couples ranging from OsV-OsIV/OsIV-OsIV to OsIII-OsII/OsII-OsII. DeltaE1/2 values for couples adjacent to the three mixed-valence forms are 0.19 V for OsIII-OsII, 0.52 V for OsIV-OsIII, and >0.71 V for OsV-OsIV. In CH3CN at 60 degrees C, [OsIII-N3-OsIII]+ undergoes a [2 + 3] cycloaddition with CH3CN at the mu-N3- bridge followed by a solvolysis to give trans-[OsIII(tpy)(Cl)2(5-MeCN4)] and trans-[OsIII(tpy)(Cl)2(NCCH3)]PF6.  相似文献   

14.
Reactions between sodium amides Na[N(SiMe3)R1] [R1 = SiMe3 (1), SiMe2Ph (2) or But (3)] and cyanoalkanes RCN (R = Ad or But) were investigated. In each case the nitrile adduct [Na{mu-N(SiMe3)2}(NCR)]2 [R = Ad (1a) or But (1b)], trans-[Na{mu-N(SiMe3)(SiMe2Ph)}(NCR)]2 [R = Ad (2a) or But (2b)], [(Na{mu-N(SiMe3)But})3(NCAd)3] (3a) or [(Na{mu-N(SiMe3)But})3(NCBut)n] [n = 3 (3b) or 2 (3c)] was isolated. The reaction of complexes 3a or 3b with benzene afforded the ketimido complex [Na{mu-N=C(Ad)(Ph)}]6.2C6H6 (4a) or [Na{mu-N=C(But)(Ph)}]6 (4b); the former was also prepared in more conventional fashion from NaPh and AdCN. The synthesis and structure of an analogue of complex 1a, [Li{mu-N(SiMe3)2}(NCAd)]2 (5a), is also presented. The compounds 1a, 1b, 2a, 2b, 3, 3b, 4a, 4b and 5a were characterised by X-ray diffraction.  相似文献   

15.
The reaction of WOCl(4) with 2,4-di-tert-butyl-6-((isopropylamino)methyl)phenol followed by the reaction with phenyl isocyanate leads to the formation of imidotungsten(VI) complex [W(NPh)Cl(3)(OC(6)H(3)(CH(2)NH-i-Pr)-2-t-Bu(2)-4,6)] 4 with a chelating aminophenolate ligand. When the same procedure was applied using aminophenols with bulkier substituents in the amino group, the final product was an unexpected Schiff-base complex [W(NPh)Cl(3)(OC(6)H(3)(CH=NPh)-2-t-Bu(2)-4,6)] 5, where the ligand is derived from 2,4-di-tert-butyl-6-((phenylimino)methyl)phenol. Complex 5 is also formed in the thermal degradation of 4. On the whole, 5 appears to be formed by a disproportionation of intermediate compounds, which are analogous to complex 4. The solid-state structures of 4 and 5 have been determined by X-ray crystallography whereas the solution structures were studied by (1)H and (13)C NMR.  相似文献   

16.
The reaction of Na[RuCp(CO) 2] with [MnCp'(CO) 2(NO)]BF 4 gives the corresponding heterometallic derivative [MnRuCpCp'(mu-CO) 2(CO)(NO)] (Cp = eta (5)-C 5H 5; Cp' = eta (5)-C 5H 4Me). In contrast, the group 6 metal carbonyl anions [MCp(CO) 2L] (-) (M = Mo, W; L = CO, P(OMe) 3, PPh 3) react with the Mn and Re complexes [M'Cp'(CO) 2(NO)]BF 4 to give the heterometallic derivatives [MM'CpCp'(mu-N)(CO) 3L] having a nitride ligand linearly bridging the metal centers (W-N = 1.81(3) A, N-Re = 1.97(3) A, W-N-Re = 179(1) (o), in [WReCpCp'(mu-N)(CO) 3{P(OMe) 3}]). Density-functional theory calculations on the reactions of [WCp(CO) 3] (-) and [RuCp(CO) 2] (-) with [MnCp(CO) 2(NO)] (+) revealed a comparable qualitative behavior. Thus, two similar and thermodynamically allowed reaction pathways were found in each case, one implying the displacement of CO from the cation and formation of a metal-metal bond, the other implying the cleavage of the N-O bond of the nitrosyl ligand and release of a carbonyl from the anion as CO 2. The second pathway is more exoergonic and is initiated through an orbitally controlled attack of the anion on the N atom of the NO ligand in the cation. In contrast, the first pathway is initiated through a charge-controlled attack of the anion to the C atom of a CO ligand in the cation. The CO 2-elimination pathway requires at the intermediate stages a close approach of the NO and CO ligands, which is more difficult for the Ru compound because of its lower coordination number (compared to W). This effect, when combined with a stronger stabilization of the initial intermediate in the Ru reaction, makes the CO 2-elimination pathway slower in that case.  相似文献   

17.
Synthesis of emerald green fullerenes (EF) C60[C(CH3)(CO2Et)2]6 and C60[C(CH3)(CO2-t-Bu)2]6 was performed by using hexaanionic C60 intermediate (C60-6) as a reagent in one-pot reaction for attaching six alkyl ester addends on one C60 cage. These EF compounds exhibit intense optical absorption over 600-940 nm, the longest optical absorption of the C60 cage among many [60]fullerene derivatives synthesized.  相似文献   

18.
Addition of 2 equiv of a sigma-donor ligand (L = pyridine, 4-picoline, or quinoline) to complexes of the type [W(NPh)(eta(4)-arene)(o-(Me3SiN)2C6H4)] (arene = CH3CH2C6H5 (3), CH3CH2CH2C6H5 (4)) gave the W(IV)L2 compounds, [W(NPh)(o-(Me3SiN)2C6H4)(C5H5N)2] (5), [W(NPh)(o-(Me3SiN)2C6H4)(p-C6H7N)2] (6), and [W(NPh)(o-(Me3SiN)2C6H4)(C9H7N)2] (7). Synthesis of compounds 5 and 6 by Na degrees reduction of [W(NPh)(o-(Me3SiN)2C6H4)Cl2] in the presence of 3 equiv of L (L = 5, pyridine or 6, 4-picoline) is also presented. Compounds 5, 6, and 7 display hindered rotation of the donor ligands about the W-N bonds, resulting from a steric interaction with the Me3Si groups of the diamide ligand. The coordinative unsaturation of 5 and 6 has also been explored. Compounds 5 and 6 readily react with either CO and PMe3 to generated the six coordinate complexes [W(NPh)(o-(Me3SiN)2C6H4)(C5H5N)2(CO)] (8a), [W(NPh)(o-(Me3SiN)2C6H4)(C6H7N)2(CO)] (8b), [W(NPh)(o-(Me3SiN)2C6H4)(C5H5N)(PMe3)2] (10a), and [W(NPh)(o-(Me3SiN)2C6H4)(C6H7N)(PMe3)2] (10b), respectively.  相似文献   

19.
Reduction of [M(CO)2(eta-RC[triple bond]CR')Tp']X {Tp' = hydrotris(3,5-dimethylpyrazolyl)borate, M = Mo, X = [PF6]-, R = R' = Ph, C6H4OMe-4 or Me; R = Ph, R' = H; M = W, X = [BF4]-, R = R' = Ph or Me; R = Ph, R' = H} with [Co(eta-C5H5)2] gave paramagnetic [M(CO)2(eta-RC[triple bond]CR')Tp'], characterised by IR and ESR spectroscopy. X-Ray structural studies on the redox pair [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'] and [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'][PF6] showed that oxidation is accompanied by a lengthening of the C[triple bond]C bond and shortening of the Mo-C(alkyne) bonds, consistent with removal of an electron from an orbital antibonding with respect to the Mo-alkyne bond, and with conversion of the alkyne from a three- to a four-electron donor. Reduction of [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'][PF6] with [Co(eta-C5H5)2] in CH2Cl2 gives [MoCl(CO)(eta-MeC[triple bond]CMe)Tp'], via nitrile substitution in [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'], whereas a similar reaction with [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']+ (M = Mo or W) gives the phosphite-containing radicals [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']. ESR spectroscopic studies and DFT calculations on [M(CO)L(eta-MeC[triple bond]CMe)Tp'] {M = Mo or W, L = CO or P(OCH2)3CEt} show the SOMO of the neutral d5 species (the LUMO of the d4 cations) to be largely d(yz) in character although much more delocalised in the W complexes. Non-coincidence effects between the g and metal hyperfine matrices in the Mo spectra indicate hybridisation of the metal d-orbitals in the SOMO, consistent with a rotation of the coordinated alkyne about the M-C2 axis.  相似文献   

20.
The reactions of [Li(2)[PhB(N(t)Bu)(2)]](2) with GaCl(3) in various stoichiometries yield [Li(thf)(4)][PhB(mu-N(t)Bu)(2)GaCl(2) x GaCl(3)] (1), [PhB(mu-N(t)Bu)(2)GaCl](2) (2), and [mu-Li(OEt(2))[PhB(N(t)Bu)(2)]Ga] (3a), a series of complexes in which the three chloride ligands are successively replaced by the dianion [PhB(N(t)Bu)(2)](2-). The X-ray structures of 1, 2, and 3a show that the boraamidinate ligand adopts an N,N'-chelating mode. In the ion-separated complex 1, one of the nitrogen atoms is coordinated to a GaCl(3) molecule. The related indium complexes [mu-LiCl(thf)(2)][PhB(mu-N(t)Bu)(2)InCl](2) (4) and [mu-Li(OEt(2))[PhB(mu-N(t)Bu)(2)]In] (3b) were obtained in a similar manner. Complex 4 is the indium analogue of 2 with the incorporation of a bissolvated LiCl molecule. In 3a and 3b the spirocyclic [[PhB(mu-N(t)Bu)(2)](2)M](-) (M = Ga, In) anions are N,N'-chelated to the [Li(OEt(2))](+) counterion. Prolonged reactions result in the formation of [PhB(mu-N(t)Bu)(2)GaCl][(t)BuN(H)GaCl(2)] (5) and [[PhB(mu-N(t)Bu)(2)InCl][(t)BuN(H)InCl(2)][mu-LiCl(OEt(2))(2)]] (6), respectively. The X-ray structures of 5 and 6 reveal bicyclic structures which formally involve the entrapment of the monomers (t)BuN(H)MCl(2) by a four-membered BN(2)M ring (M = Ga, In). The synthesis and X-ray structure of Cl(2)Ga[mu-N(H)(t)Bu](2)GaCl(2) are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号