首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Analytical letters》2012,45(1):46-55
Abstract

A Chemiluminescence Enzyme‐Linked Immuno‐Sorbent Assay (CL‐ELISA) for determination and quantification of the fungicide thiram in honeybees was developed in an indirect competitive format. The assay was optimized by determining: the optimal coating conjugate concentration and anti‐thiram antiserum dilution, the effect of the incubation time on the competitive step, the tolerance to organic solvents. The IC50 and the limit of detection (LOD) values were 60 ng mL?1 and 9 ng mL?1, respectively, similar to those of colorimetric ELISA with a calibration range of 9–15,000 ng mL?1. Cross reactivity of some related compounds such as some dithiocarbamates, a thiocarbamate, the ethylenethiourea and the tetramethylthiourea were tested. The assay was then applied to honeybees sample extracts obtained by using the liquid‐liquid extraction or the graphitized carbon‐based solid phase extraction.

The calibration curves in honeybee extracts from liquid‐liquid procedure gave an IC50 of 141 ng mL?1 and a LOD of 17 ng mL?1. In case of extracts obtained by SPE these values were 139 ng mL?1 and 15 ng mL?1, respectively. The average recovery value from honeybee extracts spiked with 75 ng mL?1 of thiram was 72% for SPE, higher than for liquid‐liquid extraction (60%). On the opposite, when the honeybees were directly spiked with 2 and 10 ppm the average recovery was higher for liquid‐liquid extraction (54%), than for SPE (31%). Finally, the assay was applied to honeybee samples collected during monitoring activities in Italy and Russia.  相似文献   

2.
《Analytical letters》2012,45(3):466-475
A Chemiluminescent Enzyme-Linked Immuno-Sorbent Assay (CL-ELISA) for determination and quantification of the fungicide imidacloprid in honeybees was developed in an indirect competitive format. The assay was optimized by determining: the optimal coating conjugate concentration and anti-imidacloprid antiserum dilution, the effect of the incubation time on the competitive step, and the tolerance to organic solvents. The IC50 and the limit of detection (LOD) values were 14.8 ng mL?1 and 0.11 ng mL?1, respectively, similar to those of colorimetric ELISA with a calibration range of 0.1–2600 ng mL?1. Cross reactivity of some related compounds such as three imidacloprid metabolites, 6-chloro nicotinic acid, 5-hydroxy-imidacloprid, and imidacloprid olefin, and one other chloronicotinoid insecticide, acetamiprid, were tested. The assay was then applied to honeybee extracts obtained by using the liquid-liquid extraction. The calibration curves in honeybee extracts from the liquid-liquid procedure gave an IC50 of 23.7 ng mL?1 and a LOD 1.6 ng mL?1. The average recovery value from honeybee extracts spiked with 100 and 1000 ng mL?1 of imidacloprid were 73% and 76%, respectively. Finally, the assay was applied to honeybee samples collected during monitoring activities in Italy; it was found that only five of the 27 samples were positives, with low concentrations of imidacloprid ranging between 1.2 and 15.4 ng g?1.  相似文献   

3.
《Analytical letters》2012,45(16):2655-2664
Sample preparation technique based on an organic filter membrane (pH-resolved filter membrane microextraction) (pH-RFMME) was developed, coupled with high-performance liquid chromatography, and used to determine protoberberine alkaloids (jatrorrhizine, epiberberine, coptisine, palmatine, and berberine) in Coptis chinensis at different pH values through a one-step procedure. This green procedure provides a desirable sample pretreatment technology. The main variables affecting the extraction such as filter membrane area (or volumes of extraction solvents), sample pH, eluent pH, ionic strength, extraction stirring rate, extraction time, and sample volume were optimized. Under the optimized conditions, the enrichment factors of the analytes were 40.4–52.0, the linear ranges were 3.2–6250 ng · mL?1 for jatrorrhizine and epiberberine, 6.0–12000 ng · mL?1 for coptisine, 1.8–3600 ng · mL?1 for palmatine, and 18.8–18800 ng · mL?1 for berberine, with r 2 ≥ 0.9945. The limits of detection were less than 0.3 ng · mL?1. Satisfactory recoveries (84.8%–115.5%) and precision (1.8%–10.0%) were also achieved. These results confirmed that pH-RFMME is a simple, rapid, practical, and environmentally friendly method to isolate analytes that exhibit significant differences in acidity or alkalinity from complex samples.  相似文献   

4.
A novel and simple two-step micro-extraction technique combining surfactant-assisted dispersive liquid–liquid micro-extraction and magnetic solid-phase extraction prior to high-performance liquid chromatography was established for analysis of polyphenols including chlorogenic acid, caffeic acid, and scopoletin in tobacco samples. In the developed system, Fe3O4 nanoparticles were synthesized by a one-step chemical co-precipitation method and used to remove hydrophobic substances in tobacco samples by physical adsorption. Low-density solvent (1-heptanol) and cationic surfactant cethyltrimethyl ammonium bromide were employed as extraction solvent and disperser agent, respectively. Under the optimized experimental conditions, a good linearity of the method was obtained over the concentration range from 0.1 to 1000 ng mL?1 for target analytes. The limits of detection (S/N?=?3) were 0.05 ng mL?1 for CGA, 0.10 ng mL?1 for CFA, and 0.12 ng mL?1 for SP, respectively. Finally, the applicability of the developed method was evaluated by extraction and determination of these three phenolic compounds in tobacco samples and satisfactory average recoveries of spiked samples were between 96.6 and 102.7%.  相似文献   

5.
ABSTRACT

The parabens, which are harmful to our bodies, are primarily utilized as preservatives in medicine, personal care products and cosmetics. A novel, more efficient, fast and cheap vortex-assisted liquid phase microextraction method based on deep eutectic solvents (DESs) was developed for the determination of parabens. The microextraction conditions were optimized using these solvents and the analytical parameters of the method were determined under optimal microextraction conditions. After extraction, the chromatographic separation of parabens was undertaken using high-performance liquid chromatography-UV detection. Experimental parameters, such as DES type, DES volume, dilution solvent volume and vortex extraction time were optimized. DES6 [ChCl-Ethylene glycol (1/2)] was the most suitable DES to work in this study. Detection limits for this method of 0.053 µg mL?1 for methylparaben, 0.061 µg mL?1 for ethylparaben, 0.049 µg mL?1 for propylparaben and 0.052 µg mL?1 for butylparaben were obtained. Correlation coefficients (R2) for a concentration range of 0.1–100 µg mL?1 were higher than 0.9992 and relative standard deviation (RSD) values below 2.91% at parabens concentration of 2.5 µg mL?1 were obtained. The results of spike/recovery values of real samples were greater than 84%. When compared with other methods, the main advantages include lower LOD, short extraction time, rapidity, repeatability and simplicity.  相似文献   

6.
A new facile, rapid, inexpensive, and sensitive method based on magnetic micro-solid phase extraction (M-??-SPE) coupled to gas chromatography?Cmass spectrometry (GC?CMS) was developed for determination of the herbicide oxadiargyl in environmental water samples. The feasibility of employing non-modified magnetic nanoparticles (MNPs) as sorbent was examined and applied to perform the extraction process. Influential parameters affecting the extraction efficiency along with desorption conditions were investigated and optimized. The limit of detection (LOD, S/N = 3) and limit of quantification (LOQ, S/N = 10) of the method under optimized conditions were 0.005 and 0.030 ng mL?1, respectively. The relative standard deviations (RSD) (n = 3) at a concentration of 0.10 ng mL?1 was 11%. The calibration curve of oxadiargyl showed linearity in the range of 0.050?C0.50 ng mL?1. The developed method was successfully applied to the extraction of oxadiargyl from spiked tap water and Zayande-Rood River water samples and the relative recoveries of 98 and 94% were obtained, respectively.  相似文献   

7.
《Analytical letters》2012,45(16):2643-2654
Dispersive liquid–liquid microextraction based on solid formation without a disperser combined with high-performance liquid chromatography has been developed for the determination of 4-tert-butylphenol, 4-n-nonylphenol, and 4-tert-octylphenol. This method is rapid, easy, and uses only 10 µL of a low toxicity organic solvent (1-hexadecanethiol) for the extraction solvent and no disperser solvent. The extraction time and centrifugation time require less than 10 min. The linear range was 1–500 ng mL?1 for 4-tert-butylphenol, 2–1000 ng mL?1 for 4-tert-octylphenol, and 5–500 ng mL?1 for 4-n-nonylphenol with r2 ≥ 0.9986. The detection limits were between 0.2 and 1.5 ng mL?1. The recoveries of lake and river water samples were in the range of 79% to 108%, and the relative standard deviations were 5% to 10%.  相似文献   

8.
We describe a simple, environmentally friendly and selective technique for the determination of ochratoxin A (OTA) in urine. It involves (a) the use of a molecularly imprinted polymer as a sorbent in micro-solid-phase extraction in which the sorbent is contained in a propylene membrane envelope, and (b) separation and detection by capillary electrophoresis (CE). Under optimized conditions, response is linear in the range between 50 and 300 ng mL?1 (with a correlation coefficient of 0.9989), relative standard deviations range from 4 to 8 %, the detection limit for OTA in urine is 11.2 ng mL?1 (with a quantification limits of 32.5 ng mL?1) which is lower than those of previously reported methods for solid-phase extraction combined with CE. The recoveries of OTA from urine spiked at levels of 50, 150 and 300 ng mL?1 ranged from 93 to 97 %.
Figure
?  相似文献   

9.
This work proposes a new, rapid and simple homogeneous liquid–liquid microextraction via flotation assistance technique for the analysis of six organochlorine pesticides in water samples. A special extraction cell was used to facilitate collection of the low-density solvent extract. No centrifugation was required in this procedure. Determination was carried using gas chromatography–mass spectrometry. The water sample solution was then added into the extraction cell containing appropriate mixture of extract and homogeneous solvents. In the first step, a homogeneous solution and then with the continuation of water sample injection, a cloudy solution was formed. Using air flotation, the organic solution was collected at the conical part of the designed cell. The optimized levels of effective parameters were found based on response surface methodology approach. Applying the optimized conditions to the system understudy, the limits of detection of all target analytes were obtained in the range of 1.4–7 ng mL?1, while the precisions were found to be in the range of 11.08–14.87 (RSD, n = 3). The linearity of the method lay in the range of 10–150 ng mL?1 with the coefficients of correlation (r 2 ) ranging from 0.998 to 0.999.  相似文献   

10.
Electrospun nanofibers from poly(methylmethacrylate) (PMMA) and polystyrene (PS) blend were used as a sorbent to extract tramadol from urine and plasma samples. Then, the tramadol concentration was determined by corona discharge ion mobility spectrometry. The hydrophilic (PMMA) and hydrophobic (PS) properties of the blend polymer improved extraction efficiency of the analyte. The scanning electron microscopy images of the PMMA/PS nanofibers showed a diameter range of 130–600 nm with a smooth morphology. Parameters affecting extraction efficiency were optimized and under the optimized conditions, the dynamic ranges and detection limit of tramadol were found to be 30–500 and 10–200 ng mL?1, and 9.4 and 1.6 ng mL?1 in plasma and urine samples, respectively.  相似文献   

11.
A sensitive and rapid LC–MS–MS method was developed for the simultaneous determination of ebastine and carebastine in human plasma. Solid-phase extraction was used to isolate the compounds from the biological matrix followed by separation on a Symmetry C18 column under isocratic conditions. The mobile phase was 10 mM ammonium formate in water/acetonitrile (40:60, v/v). Detection was carried out using a triple-quadrupole mass spectrometer in positive electrospray ionization and multiple reaction monitoring mode. The method was fully validated over the concentration range of 0.1–10 ng mL?1 for ebastine and 0.2–200 ng mL?1 for carebastine in human plasma, respectively. The lower limit of quantification (LLOQ) was 0.1 ng mL?1 for ebastine and 0.2 ng mL?1 for carebastine. For ebastine and carebastine inter- and intra-day precision (CV%) and accuracy values were all within ±15% and 85–115%, respectively. The extraction recovery was on average 60.0% for ebastine and 60.3% for carebastine.  相似文献   

12.
《Analytical letters》2012,45(11):1603-1619
Abstract

An accelerated solvent extraction (ASE) method has been developed for the determination of polycyclic aromatic hydrocarbons (PAHs) present in both atmospheric particulate and gaseous phases in this study. Extraction parameters such as the combination of solvents, extraction temperature, and static extraction time were investigated and optimized. Effective extraction was achieved using a 3:1 mixture of n-hexane and acetone as extraction solvents at 100°C in 30 min for all the compounds studied. The optimized extraction method was compared with conventional extraction methods and validated using National Institute of Standards and Technology (NIST)–certified standard reference material (SRM) 1649a. The recoveries obtained for certified 12 PAHs were in the range of 82–126% with relative standard deviation (RSD) between 6 and 28%. The validated ASE technique was used followed by gas chromatography–mass spectrometry (GC-MS) for the determination of PAHs distributed between gaseous and particulate phases in the atmosphere of Singapore. Total average concentrations of PAHs in air samples were 33.54 ± 19.32 ng m?3, with 4.72 ± 2.80 ng m?3 in particulate phase and 28.82 ± 16.92 ng m?3 in gaseous phase, respectively. The results obtained from this study are compared to those reported from other areas of the world.  相似文献   

13.
The purpose of this study was to develop a simple and accurate analytical method for determination of norepinephrine, epinephrine, and dopamine in urine. The method involves liquid–liquid extraction then liquid chromatography–mass spectrometry (LC–MS). Alkyl chloroformate derivatives were prepared, as the N(O,S)-alkoxycarbonyl alkyl esters of the analytes, in the aqueous samples. The optimum derivatizing reagent for preparation of the N(O,S)-alkoxycarbonyl alkyl esters was chosen by comparing the efficiency of LC of the derivatized analytes after liquid–liquid extraction. The optimum conditions for liquid–liquid extraction from the aqueous matrix were pH 3.0, no salt, and diethyl ether as extraction solvent. Limits of detection (LOD) were 0.5 ng mL?1 for dopamine and epinephrine and 0.1 ng mL?1 for norepinephrine. Limits of quantification (LOQ) for urine samples were 1.0 ng mL?1 for all three compounds. The precision of intra- and inter-day assays was 1.65–581 and 7.17–9.73% (relative standard deviation, RSD), respectively. The range of inaccuracy for intra- and inter-day assays was ?6.47 to 11.9% and ?7.5 to 7.76% (bias) at concentrations of 5 and 50 ng mL?1, respectively.  相似文献   

14.
A simple, sensitive, and precise high performance liquid chromatographic method for the analysis of pantoprazole, rabeprazole, esomeprazole, domperidone and itopride, with ultraviolet detection at 210 nm, has been developed, validated, and used for the determination of compounds in commercial pharmaceutical products. The compounds were well separated on a Hypersil BDS C18 reversed-phase column by use of a mobile phase consisting of 0.05 M, 4.70 pH, potassium dihydrogen phosphate buffer - acetonitrile (720:280 v/v) at a flow rate of 1.0 mL min?1. The linearity ranges were 400–4,000 ng mL?1 for pantoprazole, 200–2,000 ng mL?1 for rabeprazole, 400–4,000 ng mL?1 for esomeprazole, 300–3,000 ng mL?1 for domperidone and 500–5,000 ng mL?1 for itopride. Limits of detection (LOD) obtained were: pantoprazole 147.51 ng mL?1, rabeprazole 65.65 ng mL?1, esomeprazole 131.27 ng mL?1, domperidone 98.33 ng mL?1 and itopride 162.35 ng mL?1. The study showed that reversed-phase liquid chromatography is sensitive and selective for the determination of pantoprazole, rabeprazole, esomeprazole, domperidone and itopride using single mobile phase.  相似文献   

15.
A new method has been developed for the determination of metalaxyl, myclobutanil, and tebuconazole in environmental water samples with preconcentration by cartridges packed with SiO2 microspheres prior to LC. Several parameters such as the volume and composition of eluent, sample flow rate, sample pH, and sample volume were optimized. Under the optimal conditions, excellent detection limits (S/N = 3) and precision (RSD, n = 6) were 0.02 ng mL?1, 1.3% for metalaxyl, 0.02 ng mL?1, and 2.4% for myclobutanil and 0.08 ng mL?1 and 4.3% for tebuconazole, respectively. The method was applied to the analysis of real-water samples, and satisfactory results were obtained. The average spiked recoveries were in the range of 86.3–97.5%. These results indicate that SiO2 microspheres have great potential to be used as a novel solid phase extraction adsorbent that could have wide applications in the environmental field.  相似文献   

16.
《Analytical letters》2012,45(13):1764-1776
A rapid, sensitive, and specific high-performance liquid chromatography tandem mass spectrometric method was developed for the simultaneous determination and confirmation of amoxicillin and clavulanic acid in plasma. Plasma sample was subjected to a simple deproteinization with acetonitrile, and then the supernatant was directly diluted by water. Analysis was performed on a Phenomenex Luna C8 reversed-phase column by detection with mass spectrometry in negative ions multiple reaction monitoring mode. A gradient elution program with 0.1% formic acid and acetonitrile was performed at a flow of 0.25 mL min?1. There is good linearity in the range of 0.5–500 ng mL?1 for both amoxicillin and clavulanic acid. The decision limits of amoxicillin and clavulanic acid were 0.06 ng mL?1 and 0.08 ng mL?1 in plasma, respectively, and the detection capabilities of two analytes were below 0.5 ng mL?1. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The extraction recoveries of amoxicillin and clavulanic acid were between 102% and 115% in plasma at three spiked levels of 0.5, 50, and 500 ng mL?1, with the relative standard deviations less than 15% for each analyte. The developed method was applied to pharmacokinetic studies of amoxicillin and clavulanic acid tablets in healthy beagles.  相似文献   

17.
Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that make them of interest for applications in separation science. In this study, a green, simple, and sensitive sample pretreatment procedure coupled with high-performance liquid chromatography (HPLC) was developed for the analysis of sulfadimidine (SM2) that exploits an aqueous two-phase system based on 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4) and ammonium sulfate ((NH4)2SO4) using a liquid?Cliquid extraction technique in real environmental water samples. The influences of the concentration of (NH4)2SO4, pH value, temperature, and concentration of SM2 on the extraction efficiency of SM2 were determined. Under optimal conditions, the extraction efficiencies of SM2 were over 93.7%. Calibration curves yielded good linearity (R 2 = 0.9998) over the range 3?C240 ng mL?1, and the limit of detection and limit of quantification for analytes were 0.9 ng mL?1 and 3 ng mL?1, respectively. The proposed method was successfully applied to the quantification of SM2 in water samples and recoveries were in the range of 101.2?C107%.  相似文献   

18.
Dispersive liquid–liquid microextraction (DLLME) assisted with salting-out was applied for the determination of five aromatic amines in water samples by using gas chromatography with flame ionization detection. In this extraction method, several factors influencing the extraction efficiency of the target analytes, such as extraction and disperser solvent type and their volume, salt addition and amount, and pH, were studied and optimized. Under the optimal DLLME conditions, good linearity was observed in the range of 4–1,000 ng mL?1 with the RSDs from 1.2 to 7.9 %. The LODs based on S/N of 3 ranged from 0.2 to 3.4 ng mL?1 and the enrichment factors ranged from 207 to 4,315. The proposed method was successfully applied to the water samples collected from the tap and the lake, and the relative recoveries were in the range of 87.7–108.4 %.  相似文献   

19.
In this study, the performances of four ionic-liquid-based microextraction methods, ionic-liquid-based dispersive liquid–liquid microextraction (IL-DLLME), ionic-liquid-based ultrasound-assisted emulsification microextraction (IL-USA-ME), temperature-controlled ionic-liquid dispersive liquid-phase microextraction (TC-IL-DLME), and ultrasound-assisted temperature-controlled ionic-liquid dispersive liquid-phase microextraction (USA-TC-IL-DLME), were investigated for extraction of three bioactive compounds (anethole, estragole, and anisaldehyde) from different plant extracts and human urine. Anethole and estragole were chosen because they can alter cellular processes positively or negatively, and an efficient method is needed for their extraction and sensitive determination in the samples mentioned. Because there is no previous report on the separation of anethole and estragole (structural isomers), first, simultaneous gradient elution and flow programming were used. The microextraction methods were then applied and compared for analysis of these compounds in plant extracts and human urine by use of high-performance liquid chromatography (HPLC). The effect of conditions on extraction efficiency was studied and under the optimum conditions, the best enrichment factors (58–64), limits of detection (14–18 ng mL?1), limits of quantification (47–60 ng mL?1), and recovery (94.4–101.7 %) were obtained by use of USA-TC-IL-DLME. The optimized conditions were used to determine anethole, estragole, and para-anisaldehyde in fennel, anise, and tarragon extracts and in human urine.  相似文献   

20.
Here, we report a rapid and specific method based on high-performance liquid chromatography coupled with tandem mass spectrometry (LC–MS–MS) capable of quantifying six CYP450-specific probe substrates in human liver microsomal incubation mixtures simultaneously. These analytes were prepared by single-step extraction and detected in one run by switching polarity of electrospray ionization mode three times. Following optimization of the chromatographic conditions, the peaks were well separated, and retention times ranged between 2.0 and 8.4 min. The total run time for a single injection was within 9 min. This method was fully validated over linear range of 18.8–3,000.0 ng mL?1 for diclofenac, 0.8–3,000.0 ng mL?1 for dapson, 1.5–3,000.0 ng mL?1 for dextromethorphan, 2.0–4,000.0 ng mL?1 for omeprazole, 75.0–3,000.0 ng mL?1 for chlorzoxazone and 0.8–3,000.0 ng mL?1 for phenacetin using diazepam as internal standard. Samples were prepared by protein precipitation and analyzed on the LC–MS–MS equipped with ESI interface. For each analyte, inter- and intra-day precision (RSD%) were <15 % and accuracy was within 85–115 %. The specificity, precision, accuracy, stabilities and matrix effect were evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号