首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Polystyrene (PS) was extracted from styrofoam waste and functionalised with schiff base, N,N-bis(salicylidene)cyclohexanediamine (SCHD) through an azo spacer. The resin was characterised and used for preconcentration of Pb(II), Ni(II) and Cd(II) ions prior to their trace determinations by microsample injection system–coupled flame atomic absorption spectrometry (MIS-FAAS). The recoveries of studied metal ions were achieved ≥96.0% with relative standard deviation (RSD) ≤4.5 at optimum parameters: pH 8; resin amount 300 mg; flow rates 3.0 mL min?1 of sample solution; and 2.0 mL min?1 of eluent (2.0 mol L?1 HNO3). The limits of detection (LODs) and limits of quantification (LOQs) were found to be 0.32, 0.23 and 0.21 and 1.10, 0.78 and 0.69 μg L?1, respectively, with preconcentration factors (PFs) of 500, 800 and 1000, respectively. The linear ranges of the method were 1–40, 1–25 and 1–20 μg L?1 for Pb(II), Ni(II) and Cd(II) ions, respectively. The accuracy and validation of the method were evaluated by analysis of certified reference materials (CRMs). The method was successfully applied for preconcentration of studied metal ions in wastewater and wastewater-irrigated vegetable samples.  相似文献   

2.
《Analytical letters》2012,45(9):1430-1441
A new column loaded with modified silica gel-chitosan is proposed as a preconcentration system for adsorption of trace cadmium (II) and copper (II). The optimization steps were performed under dynamic conditions, involving pH, sample flow rate, eluent selection, concentration, volume, and flow rate. Trace Cd(II) and Cu(II) were quantitatively adsorbed by the modified silica gel-chitosan. The metal ions adsorbed on the separation column were eluted with 0.1 M HNO3 and determined by flame atomic absorption spectrometry. Under the optimum conditions, this method allowed the determination of cadmium and copper with limits of detection (LOD) of 20 ng L?1 and 38 ng L?1, respectively. The relative standard deviation values (RSDs) for 1.0 mg L?1 of cadmium and 1.0 mg L?1 of copper were 2.62% and 2.85%, respectively.  相似文献   

3.
Six phenolic compounds were separated and determined by capillary zone electrophoresis in red wine from Brazil’s region Vale do São Francisco with total analysis time of 12 min. The limit of detections varied from 1.59 to 2.24 mg L?1. The relative standard deviations (for n = 6) varied from 0.28 to 3.50 %. The red wine samples analyzed were bought in the local market and the phenolic compound recoveries were in the range of 98–101 %. The concentrations of gallic acid in the samples of wines varied from 16.0 to 42.0 mg L?1, caffeic acid (3.16–5.18 mg L?1), syringic acid (5.73–13.0 mg L?1), kaempferol (2.32–4.33 mg L?1), quercetin (1.68–4.03 mg L?1), myricetin (7.52–25.1 mg L?1). The concentrations found agree with data reported in the literature.  相似文献   

4.
A selective sensitive RP-LC–UV/VIS method with pre-column derivatization was developed for the determination of copper in human urine at a trace level. This method is based on the selective reaction of 2,9-dimethyl-1,10-phenanthroline (neocuproine) with copper(I) to produce a yellow-orange hydrophobic complex in a neutral or slightly acidic buffer solution (adjusted to pH 5.9). Copper(II) was reduced to copper(I) ions by ascorbic acid as a weak reducer, which was added both to urine sample and mobile phase, respectively. A hydrophobic copper(I)–neocuproine chelate was determined by RP-LC–UV/VIS using a monolithic column Chromolith Performance RP-8e (100 × 4 mm I.D.) at 30.0 ± 0.1 °C with a methanol: aqueous buffer (pH 5.9, ammonium acetate and ascorbic acid 2.8 mmol L?1) mobile phase at flow rate of 2.00 mL min?1. Sample injection volume was 20 μL and detection was done at 453 nm. The method was validated over a concentration range of 0.09–11.50 μmol L?1. The LOD of copper in human urine was found to be 0.07 μmol L?1 concentration level, suitable for clinical analysis. The precision of the results, reported as the RSD, was below 4.6 % for copper concentration within range 0.5–5.0 μmol L?1 in the spiked human urine samples.  相似文献   

5.
A sensitive and simple method has been established for simultaneous preconcentration of trace amounts of Pb (II) and Ni (II) ions in water samples prior to their determination by flame atomic absorption spectrometry. This method was based on the using of a micro-column filled with graphene oxide as an adsorbent. The influences of various analytical parameters such as solution pH, adsorbent amount, eluent type and volume, flow rates of sample and eluent, and matrix ions on the recoveries of the metal ions were investigated. Using the optimum conditions, the calibration graphs were linear in the range of 7–260 and 5–85 μg L?1 with detection limits (3Sb) of 2.1 and 1.4 μg L?1 for lead and nickel ions, respectively. The relative standard deviation for 10 replicate determinations of 50 μg L?1 of lead and nickel ions were 4.1% and 3.8%, respectively. The preconcentration factors were 102.5 and 95 for lead and nickel ions, respectively. The adsorption capacity of the adsorbent was also determined. The method was successfully applied to determine the trace amounts of Pb (II) and Ni (II) ions in real water samples. The validation of the method was also performed by the standard reference material.  相似文献   

6.
Expanded polystyrene (EPS) foam waste (white pollutant) was utilised for the synthesis of novel chelating resin i.e. EPS-N = N-α-Benzoin oxime (EPS-N = N-Box). The synthesised resin was characterised by FT-IR spectroscopy, elemental analysis, and thermogravimetric analysis. A selective method for the preconcentration of Pb(II) ions on EPS-N = N-Box resin packed in mini-column was developed. The sorbed Pb(II) ions were eluted with 5.0 mL of 2.0 mol L?1 HCl and determined by microsample injection system coupled flame atomic absorption spectrometry (MIS-FAAS). The average recovery of Pb(II) ions was achieved 95.5% at optimum parameters such as pH 7, resin amount 400 mg, flow rates 1.0 mL min?1 (of eluent) and3.0 mL min?1 (of sample solution). The total saturation capacity of the resin, limit of detection (LOD) and limit of quantification (LOQ) of Pb(II) ions were found to be 30 mg g?1, 0.033 μg L?1 and 0.107 μg L?1, respectively with preconcentration factor of 300. The accuracy, selectivity and validation of the method was checked by analysis of sea water (BCR-403), wastewater (BCR-715) and Tibet soil (NCS DC-78302) as certified reference materials (CRMs). The proposed method was applied successfully for the trace determination of Pb(II) ions in aqueous samples.  相似文献   

7.
A method was established for the preconcentration of trace Au(III), Pd(II) and Pt(IV) by activated carbon modified with 3,4-dihydroxycinnamic acid. The separation and preconcentration conditions of analytes were investigated, such as effects of pH, the contacting time, the sample ?ow rate and volume, the elution condition and the interfering ions. At a pH of 1.0, the maximum static sorption capacity of the sorbent was found to be 374.8, 96.6 and 137.5 mg g?1 for Au(III), Pd(II) and Pt(IV), respectively. The adsorbed metal ions were effectively eluted with 2.0 mL of 4% thiourea in 0.5 M HCl solution and determined by inductively coupled plasma optical emission spectrometry. The detection limit (3σ) of this method defined by IUPAC was found to be 0.12, 0.18 and 0.32 ?g L?1 for Au(III), Pd(II) and Pt(IV), respectively. The relative standard deviation (RSD) was lower than 3.0% (n = 8) towards standard solutions. The method has been validated by analysing certified reference materials and successfully applied to the determination of trace Au(III), Pd(II) and Pt(IV) in road sediments samples.  相似文献   

8.
A dispersive liquid–liquid microextraction (DLLME) method for separation/preconcentration of ultra trace amounts of Co(II) and its determination with FAAS was developed. The DLLME behavior of Co(II) using Aliquat 336-chloride as ion pairing agent was systematically investigated. The factors influencing the ion pair formation and extraction by DLLME method were optimized. Under the optimized conditions for 150 µL of extraction solvent (carbon tetrachloride), 1.5 mL disperser solvent (acetonitrile) and 5 mL of sample, the enrichment factor was 30. The detection limit was 5.6 µg L?1 and the RSD for replicate measurements of 1 mg L?1 was 1.32 %. The calibration graph using the preconcentration system for cobalt was linear from 40 to 400 µg L?1 with a correlation coefficient of 0.999. The proposed method was successfully applied for determination of cobalt in black tea, paprika and marjoram real samples.  相似文献   

9.
A new solid-phase extraction method utilising polyacrylonitrile activated carbon fibres (PAN-ACFs) as adsorbent was developed for the preconcentration of trace metal ions prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The PAN-ACFs oxidised with nitric acid were characterised by FT-IR, XRD, SEM and BET analysis. Then the resulting PAN-ACFs were used as solid-phase adsorbent for simultaneously determination of trace Al(III), Be(II), Bi(III), Cr(III), Cu(II), Fe(III) and Pb(II) ions in aqueous solutions. The influences of the analytical parameters on the recoveries of the studied ions were investigated. The optimum experimental conditions of the proposed method were pH: 6.0; eluent concentration and volume: 3.0 mL of 1.5 mol L?1 nitric acid; flow rates of sample and eluent solution: 1.5 mL min?1. The preconcentration factors were found to be 67 for Al(III), Bi(III); 83 for Cr(III), Cu(II), Fe(III) and 50 for Be(II), Pb(II). The precision of this method was in range of 1.5%~3.5% and the detection limit of this metal ions was between 0.06~1.50 μg L?1. The developed method was validated by the analysis of a certified reference sample and successfully applied to the determination of trace metal ions in water samples with satisfactory results.  相似文献   

10.
We describe a nanosized Cd(II)-imprinted polymer that was prepared from 4-vinyl pyridine (the functional monomer), ethyleneglycol dimethacrylate (the cross-linker), 2,2′-azobisisobutyronitrile (the radical initiator), neocuproine (the ligand), and Cd(II) (the template ion) by precipitation polymerization in acetonitrile as the solvent. The imprinted polymer was characterized by X-ray diffraction, thermogravimetric analysis, differential thermal analysis, and scanning electron microscopy. The maximum adsorption capacity of the nanosized sorbent was calculated to be 64 mg g?1. Cadmium(II) was then quantified by FAAS. The relative standard deviation and limit of detection are 4.2 % and 0.2 μg L?1, respectively. The imprinted polymer displays improve selectivity for Cd(II) ions over a range of competing metal ions with the same charge and similar ionic radius. This nanosized sorbent is an efficient solid phase for selective extraction and preconcentration of Cd(II) in complex matrices. The method was successfully applied to the trace determination of Cd(II) in food and water samples.
Figure
We describe a nanosized ion-imprinted polymer (IIP) for the selective preconcentration of Cd(II) ions. The nanosized-IIP was characterized by X-ray diffraction, Fourier transform IR spectroscopy, thermogravimetric and differential thermal analysis, and by scanning electron microscopy.  相似文献   

11.
Amino propyl silica (APS) gel reacts immediately with benzyl monopyridyl hydrazone (BMPH) to produce a new effective and selective derivative (BMPH-APS) for the separation and preconcentration of traces of Pd(II) in aqueous solution. Factors affecting the sorption and desorption of Pd ions have been investigated. Acidic aqueous solution of 0.5% thiourea in 0.5 mol L?1 HCl has been used as eluent for the desorption of Pd(II). The stripped metal ion was determined by flame AAS. The modified silica quantitatively sorbed Pd(II) at pH 2–4 with a sorption capacity of 0.65 mmol g?1 and preconcentration factor of 250 fold in less than one minute (t1/2). Common other ions did not interfere except Co(II) which was eliminated by EDTA . The limit of detection (LOD) is 0.1 ng mL?1 and the relative standard deviation (R. S. D.) for 10 replicate measurements at 20 ng mL?1 Pd level was 1.51%. The method was successfully applied for Pd preconcentration in highly concentrated salt solutions and in spiked clay, road dust, scrap and water samples.  相似文献   

12.
In this work, the ionic liquid (IL)[C6mim][PF6] was used as IL-based extractant for dispersive liquid–liquid microextraction, followed by back-extraction and HPLC/UV–Vis determination of 3-indole acetic acid (IAA) in pea plant. The effects of some crucial factors such as chemical structure and volume of IL, pH adjustment, dissolution temperature, extraction time, centrifugation time, and ionic strength of aqueous sample were studied. The linear range of the HPLC method for IAA quantification was 17.5 × 10?2–36.8 mg L?1. LOD, LOQ, method recovery, and preconcentration factor values were 0.170 mg L?1, 0.175 mg L?1, 98.3, and 40 %, respectively. The RSD for the suggested method was calculated as 0.93 % at 35.04 mg L?1 of IAA and each IL phase was able to be reused for at least four DLLME/back-extraction cycles. To evaluate the applicability of the suggested method, IAA was determined in pea plant samples.  相似文献   

13.
The present paper describes the feasibility of on-line preconcentration of nickel ions from aqueous medium on Ni(II)-imprinted cross-linked poly(methacrylic acid) (IIP) synthesised through a double-imprinting method and their subsequent determination by FAAS. The proposed method consisted in loading the sample (20.0 mL, pH 7.25) through a mini-column packed with 50 mg of the IIP for 2 min. The elution step was performed with 1.0 mol L?1 HNO3 at a flow rate of 7.0 mL min?1. The following parameters were obtained: quantification limit (QL) – 3.74 µg L?1, preconcentration factor (PF) – 36, consumption index (CI) – 0.55 mL, concentration efficiency (CE) – 18 min?1, and sample throughput – 25 h?1. The precision of the procedure assessed in terms of repeatability for ten determinations was 5.6% and 2.5% for respective concentrations of 5.0 and 110.0 µg L?1. Moreover, the analytical curve was obtained in the range of 5.0–180.0 µg L?1 (r = 0.9973), and a 1.64-fold increase in the method sensitivity was observed when compared with the analytical curve constructed for the NIP (non-imprinted polymer), thus suggesting a synergistic effect of the Ni(II) ions and CTAB on the adsorption properties of the IIP. The practical application of the adsorbent was evaluated from an analysis of tap, mineral, lake and river water. Considering the results of addition and recovery experiments (90.2–100 %), the efficiency of this adsorbent can be ensured for the interference-free preconcentration of the Ni(II) ions.  相似文献   

14.
In this study, we demonstrated a highly sensitive electrochemical sensor for the simultaneous detection of Pb (II) and Cd (II) in aqueous solution using carbon paste electrode modified with Eichhornia crassipes powder by square wave anodic stripping voltammetry. The effect of modifier composition, pH, preconcentration time, reduction potential and time, and type of supporting electrolyte on the determination of metal ions were investigated. Pre-concentration on the modified surface was performed at open circuit. The modified electrode exhibited well-defined and separate stripping peaks for Pb (II) and Cd (II). Under optimum experimental conditions, a linear range for both metal ions was from 10 to 5000 μg L?1 with the detection limits of 4.9 μg L?1, 2.1 μg L?1 for Cd(II) and Pb (II), respectively. The modified electrode was found to be sensitive and selective when applied to determine trace amounts of Cd (II) and Pb (II) in natural water samples.  相似文献   

15.
《Analytical letters》2012,45(15):2464-2477
An efficient solid phase extractive preconcentration/separation method was developed for the trace determination of herbicides in aqueous samples using Amberlite XAD-4 resin as the adsorbent. The retained herbicides were eluted with methanol at a flow rate of 1.0 mL min?1 and determined by HPLC-DAD (wavelength of 220 nm) using water (pH:4.7, phosphoric acid) and methanol (ratio 35:65) as the mobile phase with a flow rate of 1.0 mL min?1. Quantitative recoveries of simazine, atrazine and its metabolities were achieved at optimized analysis conditions that included 0.75 g of resin; a pH of 3.0; an eluent volume of 3.0 mL; an eluent flow rate of 1.0 mL min?1; and a sample flow rate of 4.0 mL min?1. The limits of detection, preconcentration factor, and linear ranges for the herbicides were 0.084–0.121 µgL?1, 1000, and 0.5–20 mg L?1, respectively. The performance of the method was evaluated by analysis of spiked water samples. The recoveries of simazine, atrazine and their metabolities were found to be quantitative (99.6–104.8%) with RSDs of 2.2–4.8% and 2.8–4.7% for intra-day and inter-day precision, respectively. The proposed method was successfully applied for trace determination of studied analytes in waste water, apple juice, and red wine samples.  相似文献   

16.
Arsenazo III modified maghemite nanoparticles (A-MMNPs) was used for removing and preconcentration of U(VI) from aqueous samples. The effects of contact time, amount of adsorbent, pH and competitive ions was investigated. The experimental results were fitted to the Langmuir adsorption model in the studied concentration range of uranium (1.0 × 10?4–1.0 × 10?2 mol L?1). According to the results obtained by Langmuir equation, the maximum adsorption capacity for the adsorption of U(VI) on A-MMNPs was 285 mg g?1 at pH 7. The adsorbed uranium on the A-MMNPs was then desorbed by 0.5 mol L?1 NaOH solution and determined spectrophotometrically. A preconcentration factor of 400 was achieved in this method. The calibration graph was linear in the range 0.04–2.4 ng mL?1 (1.0 × 10?10–1.0 × 10?8 mol L?1) of U(VI) with a correlation coefficient of 0.997. The detection limit of the method for determination of U(VI) was 0.01 ng mL?1 and the relative standard deviation (R.S.D.) for the determination of 1.43 and 2.38 ng mL?1 of U(VI) was 3.62% and 1.17% (n = 5), respectively. The method was applied to the determination of U(VI) in water samples.  相似文献   

17.
The biosorption of several heavy metals such as cobalt(II), chromium(III), lead(II), cadmium(II), nickel(II), and manganese(II) from aqueous systems on living microalgae cultures, Scenedesmus quadricauda and Neochloris pseudoalveolaris were studied under laboratories conditions. The kinetic and statistical parameters were calculated by using the data obtained from batch cultivation and well fitted a pseudo-first-order rate equation. The initial metal concentrations in solution were about 5–40 mg · L?1. According to the pseudo-second-order model, the biosorption capacities of Scenedesmus quadricauda for Co(II), Cr(III), Pb(II), Cd(II), Ni(II), and Mn(II) ions were found in the ranges of 2.14–52.48, 1.98–81.98, 8.05–4.26, 7.81–24.96, 2.17–55.71, and 3.54–75.20 mg g?1, respectively. Kinetic studies revealed that the metal uptake capacity of each living green algae was rather fast. It was also observed that the biosorption kinetic rate decreased with increasing concentration for both microalgae. The application of diffusion-controlled models to the experimental results indicated that the contribution of intraparticle diffusion to the overall sorption kinetics was not very important. Results showed that Co(II), Cr(III), Pb(II), Cd(II), Ni(II), and Mn(II) ions could effectively be absorbed by using living microalga cultures from aqueous solutions.  相似文献   

18.

Poly(2‐octadecyl‐butanedioic acid), prepared from polyanhydride PA‐18, possesses novel heavy metal adsorption characteristics. The adsorption capacity of this water insoluble polymer for lead (II) was substantially higher than other heterogeneous adsorbants and is equivalent to those obtained with homogeneous sorbants. The polymer exhibited pseudo‐second‐order kinetics and nearly complete adsorption of lead occurred in 15 min with initial lead (II) concentrations greater than 100 mg · L?1. Adsorptive behavior was accurately predicted by the Dubinin‐Radushkevich isotherm model. The mean free energy of adsorption of lead (II) onto poly(2‐octadecyl‐butanedioic acid) was determined to be 31.6 kJ · mol?1, suggesting an ion exchange component to the adsorption mechanism. Gibb's free energy values for this process indicate that it is spontaneous. Adsorption was relatively independent of pH in the range of 3–5, due to the utilization of the sodium carboxylate form of the chelating groups, and was not influenced by high Na+ concentration and moderate concentrations (up to 200 mg · L?1) of Ca+2. Lead (II) solutions containing 2000 mg · L?1 Ca+2 did reduce the adsorption of 2000 mg · L?1 lead (II) by 28%.  相似文献   

19.
This paper describes our research on the synthesis of the sorbent with chemically bonded ketoimine groups, and, furthermore, using this sorbent in the SPE technique to extract and preconcentrate trace amounts of metal ions in water samples. Surface characteristics of the sorbent were determined by elemental analysis, NMR spectra for the solid phases (29Si CP MAS NMR), and analysis of pore size distribution of the sorbent and nitrogen adsorption-desorption. The newly proposed sorbent with ketoimine groups was applied for the extraction and preconcentration of trace amounts of Cu (II), Cr (III) and Zn (II) ions from the water from a lake, post-industrial water and purified water unburdened back to the lake. The determination of the transition-metal ions was performed on an emission spectroscope with inductively coupled plasma ICP-OES. For the batch method, the optimum pH range for Cu (II) and Cr (III) extraction was equal to 5, and Zn(II)–to 8. All the metal ions can be desorbed from SPE columns with 10?mL of 0.5?mol?HNO3. The detection limits of the method were found to be 0.7?µg?L?1 for Cu (II), 0.08?µg?L?1 for Cr (III), and 0.2?µg?L?1 for Zn (II), respectively.  相似文献   

20.
We describe a solid phase extractor for selective separation and preconcentration of Hg(II) ion. It was prepared by immobilizing the adduct of diethylenetriamine and thiourea on silica gel. The effects of solution acidity, preconcentration time, sample flow rate and volume were optimized. The results show that Hg(II) can be selectively extracted from acidic solutions and in presence of common other metal ions. The adsorbent is stable, can be reused more than 10 times, and the maximum adsorption capacity is 23 mg g?1. Hg(II) was quantified by inductively coupled plasma optical emission spectrometry. The method has a detection limit of 23 ng L?1, and the relative standard deviation is <2 %. The procedure was validated by analyzing two standard materials (river sediment and hair powder), and was successfully applied to the preconcentration of Hg(II) in real samples.
Figure
A solid phase extractor was firstly prepared by immobilizing DETA-TU (equimolar adduct of diethylenetriamine and thiourea) on the silica gel, which was applied to selectively separate/preconcentrate trace Hg(II) from real samples  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号