首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The main objective of this paper is to provide some adequate way to compute the non-conservative hyperbolic system which describes a multicomponent turbulent flow. The model is written for an isentropic gas. The exact solution of the Riemann Problem (RP) associated to the hyperbolic system is exhibited. It is composed of constant states separated by rarefaction waves, or shock waves and a contact discontinuity.

The selection of the admissible part of the shock curve is obtained using an entropy criterion. This entropy is the total energy of the system. Thanks to the latter, one may compute the exact solution of the Riemann problem, assuming genuinely non linear fields contain sufficiently weak shocks.  相似文献   

2.
Summary Since the differential equations governing steady supersonic flow of an inviscid gas are hyperbolic, the fluid acceleration must satisfy some compatibility relations along characteristic surfaces. These relations are here obtained and integrated for a characteristic surface bounding a region of uniform flow, and it is then shown that the same relations are satisfied to a first approximation in a region adjacent to the region of uniform flow. The singularities predicted in this manner are discussed, and an approximate method of solution, complementary to the Linearized Theory, is briefly explained.  相似文献   

3.
Non-Classical Shocks and Kinetic Relations: Scalar Conservation Laws   总被引:2,自引:0,他引:2  
This paper analyzes the non-classical shock waves which arise as limits of certain diffusive-dispersive approximations to hyperbolic conservation laws. Such shocks occur for non-convex fluxes and connect regions of different convexity. They have negative entropy dissipation for a single convex entropy function, but not all convex entropies, and do not obey the classical Oleinik entropy criterion. We derive necessary conditions for the existence of non-classical shock waves, and construct them as limits of traveling-wave solutions for several diffusive-dispersive approximations. We introduce a “kinetic relation” to act as a selection principle for choosing a unique non-classical solution to the Riemann problem. The convergence to non-classical weak solutions for the Cauchy problem is investigated. Using numerical experiments, we demonstrate that, for the cubic flux-function, the Beam-Warming scheme produces non-classical shocks while no such shocks are observed with the Lax-Wendroff scheme. All of these results depend crucially on the sign of the dispersion coefficient. (Accepted February 8, 1996)  相似文献   

4.
In the study of weak solutions to nonlinear hyperbolic partial differential equations both rarefaction waves and compression waves arise. Although the behavior of rarefaction waves is known for all time, the characteristics that determine a compression wave intersect and hence the development of the wave is not easily determined. The purpose of this paper is to study compression waves. As a first step we consider the Cauchy problem for the nonlinear wave equation. We show that if the data outside some finite interval consist of constant states, then after finite time the solution involves the same states as does the solution to the Riemann problem determined by these constant states. This result is then applied to compression waves to obtain information on the shock that arises and on the steady-state solution. The region of interaction is also described. This information is obtained via a constructive procedure.  相似文献   

5.
In this work, a parallel finite volume scheme on unstructured meshes is applied to fluid flow for multidimensional hyperbolic system of conservation laws. It is based on a block-based adaptive mesh refinement strategy which allows quick meshing and easy parallelisation. As a continuation and as an extension of a previous work, the useful numerical density of entropy production is used as mesh refinement criterion combined with a local time-stepping method to preserve the computational time. Then, we numerically investigate its efficiency through several test cases with a confrontation with exact solution or experimental data.  相似文献   

6.
We compare several mixed finite-element methods for calculating viscoelastic flows where the vorticity equation changes type from elliptic to hyperbolic whenever inertia is taken into account. The flows are perturbed viscometric flows with slightly wavy walls. The perturbed uniform flow gives rise to a closed-form analytical solution. We examine five different finite-element algorithms; it is found that the so-called SU4×4 and EVSS methods perform much better than the other three. We also examine a number of features proper to flows with change of type, such as the propagation of disturbances along characteristic lines of the vorticity equation.This author acknowledges financial support from IRSIA (Institut pour l'Encouragement de la Recherche Scientifique dans l'Industrie et l'Agriculture) through a research grant.  相似文献   

7.
This paper explores the potential of a newly developed conjugate filter oscillation reduction (CFOR) scheme for shock‐capturing under the influence of natural high‐frequency oscillations. The conjugate low‐ and high‐pass filters are constructed based on the principle of the discrete singular convolution (DSC), a local spectral method. The accuracy and resolution of the DSC basic algorithm are accessed with a one‐dimensional advection equation. Two Euler systems, the advection of an isotropic vortex flow and the interaction of shock–entropy wave are utilized to demonstrate the utility of the CFOR scheme. Computational accuracy and order of approximation are examined and compared with the literature. Some of the best numerical results are obtained for the shock–entropy wave interaction. Numerical experiments indicate that the CFOR scheme is stable, conservative and reliable for the numerical simulation of hyperbolic conservation laws. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
In the present paper, we study the propagation of acceleration and shock waves in a binary mixture of ideal Euler fluids, assuming that the difference between the atomic masses of the constituents is negligible. We evaluate the characteristic speeds, proving that they can be separated into two groups: one is related to the case of a single Euler fluid, provided that an average ratio of specific heats is introduced; the other is new and related to the propagation speed due to diffusion. We evaluate the critical time for sound acceleration waves and compare its value to that of a single fluid. We then study shock waves, showing that three types of shock waves appear: sonic and contact shocks, which have counterparts in the single fluid case, and the diffusive shock, which is peculiar to the mixture. We discuss the admissibility of the shock waves using the Lax-Liu conditions and the entropy growth criterion. It is proved that the sonic and the characteristic shock obey the same properties as in the single fluid case, while for the diffusive shock there exists a locally exceptional case that is determined by a particular value of the concentration of the constituents, for which the genuine nonlinearity is lost and no shocks are admissible. For other values of the unperturbed concentration, the diffusive shock is stable in a bounded interval of admissibility.Received: 15 December 2002, Accepted: 28 June 2003 Correspondence to: T. RuggeriS. Simi: On leave from the Department of Mechanics, Faculty of Technical Sciences, University of Novi Sad, Serbia  相似文献   

9.
We consider the problem of self-similar zero-viscosity limits for systems ofN conservation laws. First, we give general conditions so that the resulting boundary-value problem admits solutions. The obtained existence theory covers a large class of systems, in particular the class of symmetric hyperbolic systems. Second, we show that if the system is strictly hyperbolic and the Riemann data are sufficiently close, then the resulting family of solutions is of uniformly bounded variation and oscillation. Third, we construct solutions of the Riemann problem via self-similar zero-viscosity limits and study the structure of the emerging solution and the relation of self-similar zero-viscosity limits and shock profiles. The emerging solution consists ofN wave fans separated by constant states. Each wave fan is associated with one of the characteristic fields and consists of a rarefaction, a shock, or an alternating sequence of shocks and rarefactions so that each shock adjacent to a rarefaction on one side is a contact discontinuity on that side. At shocks, the solutions of the self-similar zero-viscosity problem have the internal structure of a traveling wave.  相似文献   

10.
In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm.  相似文献   

11.
本文研究一个有半椭圆型表面缺陷的陶瓷材料板的热冲击阻力问题.通过多项式形式的应力和几何形状因子得到半椭圆型表面裂纹尖端的热应力强度因子.以蓝宝石陶瓷板为例,基于最大应力准则和断裂韧性准则分析其热冲击阻力行为,并由这两个准则得到其强度计算中真实的热冲击阻力曲线.  相似文献   

12.
双曲守恒律方程对空气动力学、物理学和海洋学等众多领域问题的计算有着重大意义,本文应用机器学习框架下的BP神经网络对双曲守恒律方程近似求解.首先,采用熵稳定格式及基于自适应移动网格的熵稳定格式所得多个时间层的数值解构造网络输入,采用高分辨率熵稳定格式所得对应的多个时间层的数值解构造网络输出,并对数据集作归一化处理.随后,...  相似文献   

13.
An entropy solution u of a multi-dimensional scalar conservation law is not necessarily in BV, even if the conservation law is genuinely nonlinear. We show that u nevertheless has the structure of a BV function in the sense that the shock location is codimension-one rectifiable. This result highlights the regularizing effect of genuine nonlinearity in a qualitative way; it is based on the locally finite rate of entropy dissipation. The proof relies on the geometric classification of blow-ups in the framework of the kinetic formulation.  相似文献   

14.
We present a theoretical and numerical study on the induction of adiabatic explosions by accelerated curved shocks in homogeneous explosives, and pay a special attention to critical conditions for initiation. We characterize the first stage of the decomposition process, or induction, as an initial-value problem. During induction, the reaction progress-variable remains small; the induction time is given by the runaway of the dependent variables and corresponds to a logarithmic singularity in theirs material distributions. We express these distributions as first-order expansions in the progress variable about the shock. Then, the framework of our procedure is the formal Cauchy problem for quasi-linear hyperbolic sets of first-order differential equations, such as the balance laws for adiabatic flows of inviscid fluids considered in this study. When a shock front is used as data surface, the solution to the Cauchy problem yields the flow derivatives at the shock, then the induction time, as functions of the shock normal velocity and acceleration, and , and the shock total curvature C. We next derive a necessary condition for explosion as a constraint among , and C that ensures bounded values of the induction time. This criterion is akin to Semenov's, in the sense that the critical condition for explosion is that the heat-production rate must just exceed the heat-loss rate, here given by the volumetric expansion rate at the shock. The violation of the criterion defines a critical shock dynamics as a relationship among , and C that generates infinite induction times. Depending on the rear-boundary conditions, which determine the shock dynamics, this event can be interpreted as either a non-initiation, or the decoupling of the shock and of the flame front induced by the shock. We illustrate our approach by a simple solution to the problem of the initiation by impact of a noncompressible piston. From the continuity constraint in the material speed and acceleration at the contact surface of the piston and the explosive, we first derive the initial shock dynamics, and then rewrite the induction time and the initiation condition in terms of the piston speed, acceleration and curvature. We compare these theoretical predictions to those of our direct numerical simulations, and to numerical results obtained by other authors, in the case of impacts on a gaseous explosive. Received 19 October 1998 / Accepted 1 June 1999  相似文献   

15.
基于主-次激波在变截面管中传播的数值模拟   总被引:1,自引:1,他引:0  
采用二阶精度的单调迎风中心格式(MUSCL)和非结构自适应网格技术与有限体积形式,对轴对称变截面管道中基于主-次的爆轰波传播过程进行了数值模拟。结果表明,基于主-次的爆轰波传播至目标区时,冲击波流场均匀、稳定,波形良好;适当提高驱动段的爆炸能量,目标区能够获得预想的冲击波超压值和作用时间。  相似文献   

16.
This paper gives a solution of the problem of the propagation of weak shock waves in an inhomogeneous conducting medium in the presence of a magnetic field. The width of the perturbed region is taken to be small compared with the characteristic dimensions of the problem. The magnetic Reynolds number is also assumed small, which allows one to neglect the induced magnetic field. The method of solution employed is similar to that used in [1–3],The author is grateful to B. I. Zaslavskii for useful advice and for discussing the paper.  相似文献   

17.
双曲守恒律方程是一类比较特殊的偏微分方程,其数值求解方法的研究一直是一个热点问题,一个显著特性是即使初始条件是光滑的,其解也可能会发展成间断。浅水波方程作为非线性双曲守恒律方程,由于间断解的存在,其精确求解存在很大困难。针对浅水波方程数值求解问题,本文基于PINN(Physics informed neural networks)反问题网络结构构造新的网络,构造的网络结构包括两个并行的神经网络,其中一个网络与已知状态数据(熵稳定格式加密求出)相关,另一个网络与方程本身相关。利用已知速度数据结合浅水波方程本身求解未知水深,最终通过一些数值算例验证网络的可行性。结果表明,新的网络结构可用于浅水波方程求解,利用速度数据可以较为精确地推算出水深。  相似文献   

18.
Simulating transient compressible flows involving shock waves presents challenges to the CFD practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing. This paper discusses a novel two‐dimensional Cartesian anisotropic mesh adaptation technique implemented for transient compressible flow. This technique, originally developed for laminar incompressible flow, is efficient because it refines and coarsens cells using criteria that consider the solution in each of the cardinal directions separately. In this paper, the method will be applied to compressible flow. The procedure shows promise in its ability to deliver good quality solutions while achieving computational savings. Transient shock wave diffraction over a backward step and shock reflection over a forward step are considered as test cases because they demonstrate that the quality of the solution can be maintained as the mesh is refined and coarsened in time. The data structure is explained in relation to the computational mesh, and the object‐oriented design and implementation of the code is presented. Refinement and coarsening algorithms are outlined. Computational savings over uniform and isotropic mesh approaches are shown to be significant. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
在非线性动力系统的研究中, Melnikov函数被广泛地用来作为微扰哈密顿系统是否发生次谐或超次谐分岔乃至混沌的判 据. 但是在大多数情况下,经典的Melnikov方法往往只给出存在次谐周期解的结论. 产生 该结果的原因被归之为在经典的Melnikov方法中只采取了一阶近似,因而高阶Melnikov方 法被发展用来判断超次谐周期解的存在性. 本文对一类非自治微分动力系统进行了研究,证 明了在这样一类系统中如果存在周期解则只可能是次谐周期解,超次谐周期解不可能存在, 并进一步证明了在一类平面问题中所定义的旋转(R)型超次谐周期解同样不可能存在.作为 该结论的一个应用,文中考察了几个典型的算例,结果表明现有的二阶Melnikov方法判断 平面扰动系统是否存在超次谐周期解的结论是不恰当的,并提供了一个简单的几何上的解释.  相似文献   

20.
Two well-known properties of shock adiabats in a gas [1] are proved for shock adiabats corresponding to discontinuous solutions of hyperbolic systems of equations expressing conservation laws. If the state on one side of a discontinuity is fixed, then at the point of extremum of the discontinuity velocity on the shock adiabat the velocity of the discontinuity is equal to one of the velocities of the characteristics on the other side of the discontinuity and vice versa. If for the systems there is defined an entropy flux or mass density of entropy, then at the points of extremum of the velocity there is an extremum of the entropy production at the discontinuity and the entropy mass density. If the system is a symmetric hyperbolic system [2, 3], then the extrema of the entropy production at the discontinuity correspond to extrema of the velocity. These properties may be helpful in the study of discontinuities in complex media, since the sections of a shock adiabat whose points can correspond to actually existing discontinuities are frequently bounded by points corresponding to discontinuities whose velocity is equal to the velocity of a characteristic on one of the sides of the discontinuity (see, for example, [1, 4, 5]).Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 184–186, March–April, 1979.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号