首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An acoustic model of a multiple-channel cochlear implant   总被引:1,自引:0,他引:1  
A set of bandpass filtered, pulsed noise stimuli presented to three normally hearing subjects was found to have psychophysical properties similar to those of a set of pulsed electrical stimuli presented to two cochlear implant patients. Identical procedures were used to compare the performances of the two groups of subjects in the following tasks: (a) pulse rate difference limen measurements, (b) pitch scaling for stimuli differing in pulse rate, (c) pitch scaling and categorization of stimuli differing in filter frequency or electrode position, and (d) similarity judgments of stimuli differing in pulse rate and filter frequency or electrode position. By choosing the parameters of the acoustic stimuli appropriately, a high level of agreement between the two sets of results was achieved. Electrical stimuli on electrodes at different sites in the cochlea were matched with pulsed noise passed through bandpass filters with different center frequencies. Matching was achieved for equal electrical and acoustic pulse rates.  相似文献   

2.
Acoustic models that produce speech signals with information content similar to that provided to cochlear implant users provide a mechanism by which to investigate the effect of various implant-specific processing or hardware parameters independent of other complicating factors. This study compares speech recognition of normal-hearing subjects listening through normal and impaired acoustic models of cochlear implant speech processors. The channel interactions that were simulated to impair the model were based on psychophysical data measured from cochlear implant subjects and include pitch reversals, indiscriminable electrodes, and forward masking effects. In general, spectral interactions degraded speech recognition more than temporal interactions. These effects were frequency dependent with spectral interactions that affect lower-frequency information causing the greatest decrease in speech recognition, and interactions that affect higher-frequency information having the least impact. The results of this study indicate that channel interactions, quantified psychophysically, affect speech recognition to different degrees. Investigation of the effects that channel interactions have on speech recognition may guide future research whose goal is compensating for psychophysically measured channel interactions in cochlear implant subjects.  相似文献   

3.
Three alternative speech coding strategies suitable for use with cochlear implants were compared in a study of three normally hearing subjects using an acoustic model of a multiple-channel cochlear implant. The first strategy (F2) presented the amplitude envelope of the speech and the second formant frequency. The second strategy (F0 F2) included the voice fundamental frequency, and the third strategy (F0 F1 F2) presented the first formant frequency as well. Discourse level testing with the speech tracking method showed a clear superiority of the F0 F1 F2 strategy when the auditory information was used to supplement lipreading. Tracking rates averaged over three subjects for nine 10-min sessions were 40 wpm for F2, 52 wpm for F0 F2, and 66 wpm for F0 F1 F2. Vowel and consonant confusion studies and a test of prosodic information were carried out with auditory information only. The vowel test showed a significant difference between the strategies, but no differences were found for the other tests. It was concluded that the amplitude and duration cues common to all three strategies accounted for the levels of consonant and prosodic information received by the subjects, while the different tracking rates were a consequence of the better vowel recognition and the more natural quality of the F0 F1 F2 strategy.  相似文献   

4.
The present study measured the recognition of spectrally degraded and frequency-shifted vowels in both acoustic and electric hearing. Vowel stimuli were passed through 4, 8, or 16 bandpass filters and the temporal envelopes from each filter band were extracted by half-wave rectification and low-pass filtering. The temporal envelopes were used to modulate noise bands which were shifted in frequency relative to the corresponding analysis filters. This manipulation not only degraded the spectral information by discarding within-band spectral detail, but also shifted the tonotopic representation of spectral envelope information. Results from five normal-hearing subjects showed that vowel recognition was sensitive to both spectral resolution and frequency shifting. The effect of a frequency shift did not interact with spectral resolution, suggesting that spectral resolution and spectral shifting are orthogonal in terms of intelligibility. High vowel recognition scores were observed for as few as four bands. Regardless of the number of bands, no significant performance drop was observed for tonotopic shifts equivalent to 3 mm along the basilar membrane, that is, for frequency shifts of 40%-60%. Similar results were obtained from five cochlear implant listeners, when electrode locations were fixed and the spectral location of the analysis filters was shifted. Changes in recognition performance in electrical and acoustic hearing were similar in terms of the relative location of electrodes rather than the absolute location of electrodes, indicating that cochlear implant users may at least partly accommodate to the new patterns of speech sounds after long-time exposure to their normal speech processor.  相似文献   

5.
The purpose of this study was to explore the potential advantages, both theoretical and applied, of preserving low-frequency acoustic hearing in cochlear implant patients. Several hypotheses are presented that predict that residual low-frequency acoustic hearing along with electric stimulation for high frequencies will provide an advantage over traditional long-electrode cochlear implants for the recognition of speech in competing backgrounds. A simulation experiment in normal-hearing subjects demonstrated a clear advantage for preserving low-frequency residual acoustic hearing for speech recognition in a background of other talkers, but not in steady noise. Three subjects with an implanted "short-electrode" cochlear implant and preserved low-frequency acoustic hearing were also tested on speech recognition in the same competing backgrounds and compared to a larger group of traditional cochlear implant users. Each of the three short-electrode subjects performed better than any of the traditional long-electrode implant subjects for speech recognition in a background of other talkers, but not in steady noise, in general agreement with the simulation studies. When compared to a subgroup of traditional implant users matched according to speech recognition ability in quiet, the short-electrode patients showed a 9-dB advantage in the multitalker background. These experiments provide strong preliminary support for retaining residual low-frequency acoustic hearing in cochlear implant patients. The results are consistent with the idea that better perception of voice pitch, which can aid in separating voices in a background of other talkers, was responsible for this advantage.  相似文献   

6.
In multichannel cochlear implants, low frequency information is delivered to apical cochlear locations while high frequency information is delivered to more basal locations, mimicking the normal acoustic tonotopic organization of the auditory nerves. In clinical practice, little attention has been paid to the distribution of acoustic input across the electrodes of an individual patient that might vary in terms of spacing and absolute tonotopic location. In normal-hearing listeners, Ba?kent and Shannon (J. Acoust. Soc. Am. 113, 2003) simulated implant signal processing conditions in which the frequency range assigned to the array was systematically made wider or narrower than the simulated stimulation range in the cochlea, resulting in frequency-place compression or expansion, respectively. In general, the best speech recognition was obtained when the input acoustic information was delivered to the matching tonotopic place in the cochlea with least frequency-place distortion. The present study measured phoneme and sentence recognition scores with similar frequency-place manipulations in six Med-El Combi 40+ implant subjects. Stimulation locations were estimated using the Greenwood mapping function based on the estimated electrode insertion depth. Results from frequency-place compression and expansion with implants were similar to simulation results, especially for postlingually deafened subjects, despite the uncertainty in the actual stimulation sites of the auditory nerves. The present study shows that frequency-place mapping is an important factor in implant performance and an individual implant patient's map could be optimized with functional tests using frequency-place manipulations.  相似文献   

7.
8.
This study examined the ability of cochlear implant users and normal-hearing subjects to perform auditory stream segregation of pure tones. An adaptive, rhythmic discrimination task was used to assess stream segregation as a function of frequency separation of the tones. The results for normal-hearing subjects were consistent with previously published observations (L.P.A.S van Noorden, Ph.D. dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands 1975), suggesting that auditory stream segregation increases with increasing frequency separation. For cochlear implant users, there appeared to be a range of pure-tone streaming abilities, with some subjects demonstrating streaming comparable to that of normal-hearing individuals, and others possessing much poorer streaming abilities. The variability in pure-tone streaming of cochlear implant users was correlated with speech perception in both steady-state noise and multi-talker babble. Moderate, statistically significant correlations between streaming and both measures of speech perception in noise were observed, with better stream segregation associated with better understanding of speech in noise. These results suggest that auditory stream segregation is a contributing factor in the ability to understand speech in background noise. The inability of some cochlear implant users to perform stream segregation may therefore contribute to their difficulties in noise backgrounds.  相似文献   

9.
This study investigated the effect of pulsatile stimulation rate on medial vowel and consonant recognition in cochlear implant listeners. Experiment 1 measured phoneme recognition as a function of stimulation rate in six Nucleus-22 cochlear implant listeners using an experimental four-channel continuous interleaved sampler (CIS) speech processing strategy. Results showed that all stimulation rates from 150 to 500 pulses/s/electrode produced equally good performance, while stimulation rates lower than 150 pulses/s/electrode produced significantly poorer performance. Experiment 2 measured phoneme recognition by implant listeners and normal-hearing listeners as a function of the low-pass cutoff frequency for envelope information. Results from both acoustic and electric hearing showed no significant difference in performance for all cutoff frequencies higher than 20 Hz. Both vowel and consonant scores dropped significantly when the cutoff frequency was reduced from 20 Hz to 2 Hz. The results of these two experiments suggest that temporal envelope information can be conveyed by relatively low stimulation rates. The pattern of results for both electrical and acoustic hearing is consistent with a simple model of temporal integration with an equivalent rectangular duration (ERD) of the temporal integrator of about 7 ms.  相似文献   

10.
Electrical field interaction caused by current spread in a cochlear implant was modeled in an explicit way in an acoustic model (the SPREAD model) presented to six listeners with normal hearing. The typical processing of cochlear implants was modeled more closely than in traditional acoustic models by careful selection of parameters related to current spread or parameters that could amplify the electrical field interactions caused by current spread. These parameters were the insertion depth, electrode spacing, electrical dynamic range, and dynamic range compression function. The hypothesis was that current spread could account for the asymptote in performance in speech intelligibility experiments observed at around seven stimulation channels in a number of cochlear implant studies. Speech intelligibility for sentences, vowels, and consonants at three noise levels (SNR of +15 dB, +10 dB, and +5 dB) was measured as a function of the number of spectral channels (4, 7, and 16). The SPREAD model appears to explain the asymptote in speech intelligibility at seven channels for all noise levels for all speech material used in this study. It is shown that the compressive amplitude mapping used in cochlear implants can have a detrimental effect on the number of effective channels.  相似文献   

11.
Although in a number of experiments noise-band vocoders have been shown to provide acoustic models for speech perception in cochlear implants (CI), the present study assesses in four experiments whether and under what limitations noise-band vocoders can be used as an acoustic model for pitch perception in CI. The first two experiments examine the effect of spectral smearing on simulated electrode discrimination and fundamental frequency (FO) discrimination. The third experiment assesses the effect of spectral mismatch in an FO-discrimination task with two different vocoders. The fourth experiment investigates the effect of amplitude compression on modulation rate discrimination. For each experiment, the results obtained from normal-hearing subjects presented with vocoded stimuli are compared to results obtained directly from CI recipients. The results show that place pitch sensitivity drops with increased spectral smearing and that place pitch cues for multi-channel stimuli can adequately be mimicked when the discriminability of adjacent channels is adjusted by varying the spectral slopes to match that of CI subjects. The results also indicate that temporal pitch sensitivity is limited for noise-band carriers with low center frequencies and that the absence of a compression function in the vocoder might alter the saliency of the temporal pitch cues.  相似文献   

12.
Understanding how the human speech production system is related to the human auditory system has been a perennial subject of inquiry. To investigate the production-perception link, in this paper, a computational analysis has been performed using the articulatory movement data obtained during speech production with concurrently recorded acoustic speech signals from multiple subjects in three different languages: English, Cantonese, and Georgian. The form of articulatory gestures during speech production varies across languages, and this variation is considered to be reflected in the articulatory position and kinematics. The auditory processing of the acoustic speech signal is modeled by a parametric representation of the cochlear filterbank which allows for realizing various candidate filterbank structures by changing the parameter value. Using mathematical communication theory, it is found that the uncertainty about the articulatory gestures in each language is maximally reduced when the acoustic speech signal is represented using the output of a filterbank similar to the empirically established cochlear filterbank in the human auditory system. Possible interpretations of this finding are discussed.  相似文献   

13.
In cochlear implants (CIs), different talkers often produce different levels of speech understanding because of the spectrally distorted speech patterns provided by the implant device. A spectral normalization approach was used to transform the spectral characteristics of one talker to those of another talker. In Experiment 1, speech recognition with two talkers was measured in CI users, with and without spectral normalization. Results showed that the spectral normalization algorithm had small but significant effect on performance. In Experiment 2, the effects of spectral normalization were measured in CI users and normal-hearing (NH) subjects; a pitch-stretching technique was used to simulate six talkers with different fundamental frequencies and vocal tract configurations. NH baseline performance was nearly perfect with these pitch-shift transformations. For CI subjects, while there was considerable intersubject variability in performance with the different pitch-shift transformations, spectral normalization significantly improved the intelligibility of these simulated talkers. The results from Experiments 1 and 2 demonstrate that spectral normalization toward more-intelligible talkers significantly improved CI users' speech understanding with less-intelligible talkers. The results suggest that spectral normalization using optimal reference patterns for individual CI patients may compensate for some of the acoustic variability across talkers.  相似文献   

14.
This study investigated which acoustic cues within the speech signal are responsible for bimodal speech perception benefit. Seven cochlear implant (CI) users with usable residual hearing at low frequencies in the non-implanted ear participated. Sentence tests were performed in near-quiet (some noise on the CI side to reduce scores from ceiling) and in a modulated noise background, with the implant alone and with the addition, in the hearing ear, of one of four types of acoustic signals derived from the same sentences: (1) a complex tone modulated by the fundamental frequency (F0) and amplitude envelope contours; (2) a pure tone modulated by the F0 and amplitude contours; (3) a noise-vocoded signal; (4) unprocessed speech. The modulated tones provided F0 information without spectral shape information, whilst the vocoded signal presented spectral shape information without F0 information. For the group as a whole, only the unprocessed speech condition provided significant benefit over implant-alone scores, in both near-quiet and noise. This suggests that, on average, F0 or spectral cues in isolation provided limited benefit for these subjects in the tested listening conditions, and that the significant benefit observed in the full-signal condition was derived from implantees' use of a combination of these cues.  相似文献   

15.
The addition of low-passed (LP) speech or even a tone following the fundamental frequency (F0) of speech has been shown to benefit speech recognition for cochlear implant (CI) users with residual acoustic hearing. The mechanisms underlying this benefit are still unclear. In this study, eight bimodal subjects (CI users with acoustic hearing in the non-implanted ear) and eight simulated bimodal subjects (using vocoded and LP speech) were tested on vowel and consonant recognition to determine the relative contributions of acoustic and phonetic cues, including F0, to the bimodal benefit. Several listening conditions were tested (CI/Vocoder, LP, T(F0-env), CI/Vocoder + LP, CI/Vocoder + T(F0-env)). Compared with CI/Vocoder performance, LP significantly enhanced both consonant and vowel perception, whereas a tone following the F0 contour of target speech and modulated with an amplitude envelope of the maximum frequency of the F0 contour (T(F0-env)) enhanced only consonant perception. Information transfer analysis revealed a dual mechanism in the bimodal benefit: The tone representing F0 provided voicing and manner information, whereas LP provided additional manner, place, and vowel formant information. The data in actual bimodal subjects also showed that the degree of the bimodal benefit depended on the cutoff and slope of residual acoustic hearing.  相似文献   

16.
Chinese sentence recognition strongly relates to the reception of tonal information. For cochlear implant (CI) users with residual acoustic hearing, tonal information may be enhanced by restoring low-frequency acoustic cues in the nonimplanted ear. The present study investigated the contribution of low-frequency acoustic information to Chinese speech recognition in Mandarin-speaking normal-hearing subjects listening to acoustic simulations of bilaterally combined electric and acoustic hearing. Subjects listened to a 6-channel CI simulation in one ear and low-pass filtered speech in the other ear. Chinese tone, phoneme, and sentence recognition were measured in steady-state, speech-shaped noise, as a function of the cutoff frequency for low-pass filtered speech. Results showed that low-frequency acoustic information below 500 Hz contributed most strongly to tone recognition, while low-frequency acoustic information above 500 Hz contributed most strongly to phoneme recognition. For Chinese sentences, speech reception thresholds (SRTs) improved with increasing amounts of low-frequency acoustic information, and significantly improved when low-frequency acoustic information above 500 Hz was preserved. SRTs were not significantly affected by the degree of spectral overlap between the CI simulation and low-pass filtered speech. These results suggest that, for CI patients with residual acoustic hearing, preserving low-frequency acoustic information can improve Chinese speech recognition in noise.  相似文献   

17.
Melodic contour identification was measured in cochlear implant (CI) and normal-hearing (NH) subjects for piano samples processed by four bandpass filters: low (310-620 Hz), middle (620-2480 Hz), high (2480-4960 Hz), and full (310-4960 Hz). NH performance was near-perfect for all filter ranges and much higher than CI performance. The best mean CI performance was with the middle frequency range; performance was much better for some CI subjects with the middle rather than the full filter. These results suggest that acoustic filtering may reduce potential mismatches between fundamental frequencies and harmonic components thereby improving CI users' melodic pitch perception.  相似文献   

18.
Speech perception in the presence of another competing voice is one of the most challenging tasks for cochlear implant users. Several studies have shown that (1) the fundamental frequency (F0) is a useful cue for segregating competing speech sounds and (2) the F0 is better represented by the temporal fine structure than by the temporal envelope. However, current cochlear implant speech processing algorithms emphasize temporal envelope information and discard the temporal fine structure. In this study, speech recognition was measured as a function of the F0 separation of the target and competing sentence in normal-hearing and cochlear implant listeners. For the normal-hearing listeners, the combined sentences were processed through either a standard implant simulation or a new algorithm which additionally extracts a slowed-down version of the temporal fine structure (called Frequency-Amplitude-Modulation-Encoding). The results showed no benefit of increasing F0 separation for the cochlear implant or simulation groups. In contrast, the new algorithm resulted in gradual improvements with increasing F0 separation, similar to that found with unprocessed sentences. These results emphasize the importance of temporal fine structure for speech perception and demonstrate a potential remedy for difficulty in the perceptual segregation of competing speech sounds.  相似文献   

19.
Residual acoustic hearing can be preserved in the same ear following cochlear implantation with minimally traumatic surgical techniques and short-electrode arrays. The combined electric-acoustic stimulation significantly improves cochlear implant performance, particularly speech recognition in noise. The present study measures simultaneous masking by electric pulses on acoustic pure tones, or vice versa, to investigate electric-acoustic interactions and their underlying psychophysical mechanisms. Six subjects, with acoustic hearing preserved at low frequencies in their implanted ear, participated in the study. One subject had a fully inserted 24 mm Nucleus Freedom array and five subjects had Iowa/Nucleus hybrid implants that were only 10 mm in length. Electric masking data of the long-electrode subject showed that stimulation from the most apical electrodes produced threshold elevations over 10 dB for 500, 625, and 750 Hz probe tones, but no elevation for 125 and 250 Hz tones. On the contrary, electric stimulation did not produce any electric masking in the short-electrode subjects. In the acoustic masking experiment, 125-750 Hz pure tones were used to acoustically mask electric stimulation. The acoustic masking results showed that, independent of pure tone frequency, both long- and short-electrode subjects showed threshold elevations at apical and basal electrodes. The present results can be interpreted in terms of underlying physiological mechanisms related to either place-dependent peripheral masking or place-independent central masking.  相似文献   

20.
Natural spoken language processing includes not only speech recognition but also identification of the speaker's gender, age, emotional, and social status. Our purpose in this study is to evaluate whether temporal cues are sufficient to support both speech and speaker recognition. Ten cochlear-implant and six normal-hearing subjects were presented with vowel tokens spoken by three men, three women, two boys, and two girls. In one condition, the subject was asked to recognize the vowel. In the other condition, the subject was asked to identify the speaker. Extensive training was provided for the speaker recognition task. Normal-hearing subjects achieved nearly perfect performance in both tasks. Cochlear-implant subjects achieved good performance in vowel recognition but poor performance in speaker recognition. The level of the cochlear implant performance was functionally equivalent to normal performance with eight spectral bands for vowel recognition but only to one band for speaker recognition. These results show a disassociation between speech and speaker recognition with primarily temporal cues, highlighting the limitation of current speech processing strategies in cochlear implants. Several methods, including explicit encoding of fundamental frequency and frequency modulation, are proposed to improve speaker recognition for current cochlear implant users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号