首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Three diiron 1,2-dithiolate complexes with a trans-cinnamate ester have been characterized. Esterification of [Fe2(CO)6{μ-SCH2CH(CH2OH)S}] (1) with trans-cinnamic acid in the presence of N,N′-dicyclohexylcarbodiimide and 4-dimethylaminopyridine afforded [Fe2(CO)6[μ-SCH2CH(CH2O2CCH?=?CHPh)S}] (2) in 94% yield. Carbonyl substitution of 2 with a monophosphine ligand tris(4-fluorophenyl)phosphine or tris(2-methoxyphenyl)phosphine in the presence of Me3NO·2H2O resulted in formation of the corresponding monophosphine-substituted complexes [Fe2(CO)5 {P(C6H4F-4)3}{µ-SCH2CH(CH2O2CCH?=?CHPh)S}] (3) and [Fe2(CO)5{P (C6H4OCH3-2)3}{µ-SCH2CH(CH2O2CCH?=?CHPh)S}] (4) in 79% and 84% yields, respectively. Complexes 2-4 were structurally characterized by elemental analysis, spectroscopy and X-ray crystallography. Moreover, electrochemical properties of 2-4 were investigated.  相似文献   

2.
Abstract

The reactions of the starting complex, [Fe2(CO)6{μ-SCH2CH (CH2CH3)S}] (1), with the phosphine ligands tris(4-methylphenyl)phosphine, diphenyl-2-pyridylphosphine, tris(4-fluorophenyl)phosphine, 2-(diphenylphosphino)benzaldehyde, or benzyldiphenylphosphine in the presence of the decarbonylating agent Me3NO·2H2O yielded the corresponding phosphine-substituted diiron butane-1,2-dithiolate complexes [Fe2(CO)5(L){μ-SCH2CH(CH2CH3)S}] (L?=?P(4-C6H4CH3)3, 2; Ph2P(2-C5H4N), 3; P(4-C6H4F)3, 4; Ph2P(2-C6H4CHO), 5; Ph2PCH2Ph, 6) in 75%–87% yields. The complexes have been characterized by elemental analysis, IR, 1H, and 31P{1H} NMR spectroscopy, as well as by single-crystal X-ray diffraction analysis. Moreover, the electrochemistry of 24 was studied by cyclic voltammetry, suggesting that they can catalyze the reduction of protons to H2 in the presence of HOAc.  相似文献   

3.
Abstract

In this contribution, two diiron ethane-1,2-dithiolate complexes with one ethyldiphenylphosphine or dicyclohexylphenylphosphine ligand have been synthesized and characterized as mimics for the active site of [FeFe]-hydrogenases. Treatment of complex [Fe2(CO)6(μ-SCH2CH2S)] (1) with ethyldiphenylphosphine or dicyclohexylphenylphosphine and Me3NO · 2?H2O as decarbonylating agent gave complexes [Fe2(CO)5(Ph2PCH2CH3)(μ-SCH2CH2S)] (2) and [Fe2(CO)5{PhP(C6H11)2}(μ-SCH2CH2S)] (3) in 93% and 86% yields, respectively. Complexes 2 and 3 were characterized by elemental analysis, IR, and NMR spectroscopy. X-ray crystallographic studies confirmed the molecular structures of complexes 2 and 3, indicating that they contain a butterfly diiron ethane-1,2-dithiolate cluster with five terminal carbonyl ligands and an apically-coordinated phosphine ligand. Additionally, the electrochemical properties of these complexes were investigated by cyclic voltammetry, suggesting that they can be regarded as electrocatalysts for the reduction of protons to H2 in the presence of HOAc. A possible mechanism for the proton reduction was proposed.  相似文献   

4.
Four diiron dithiolate complexes with monophosphine ligands have been prepared and structurally characterized. Reactions of (μ-SCH2CH2S-μ)Fe2(CO)6 or [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)6 with tris(4-chlorophenyl)phosphine or diphenyl-2-pyridylphosphine in the presence of Me3NO·2H2O afforded diiron pentacarbonyl complexes with monophosphine ligands (μ-SCH2CH2S-μ)Fe2(CO)5[P(4-C6H4Cl)3] (1), (μ-SCH2CH2S-μ)Fe2(CO)5[Ph2P(2-C5H4N)] (2), [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)5[P(4-C6H4Cl)3] (3), and [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)5[Ph2P(2-C5H4N)] (4) in good yields. Complexes 14 were characterized by elemental analysis, 1H NMR, 31P{1H} NMR and 13C{1H} NMR spectroscopy. Furthermore, the molecular structures of 14 were confirmed by X-ray crystallography.  相似文献   

5.
Reaction of the diiron propanedithiolate complex [μ-(SCH2)2CHO2CC6H5]Fe2(CO)6 (A) with triphenylphosphine (PPh3) or cis-1,2-bis(diphenylphosphine)ethylene (cis-dppv) in the presence of one equivalent of Me3NO·2H2O yielded a mono-substituted complex [μ-(SCH2)2CHO2CC6H5]Fe2(CO)5(PPh3) (1) or an asymmetrically substituted complex [(μ-SCH2)2CHO2CC6H5]Fe2(CO)4(κ2-dppv) (2), respectively. The structures of both complexes were characterized by spectroscopic methods and X-ray crystallography. In the solid state, the PPh3 ligand in 1 occupies an apical position of the square pyramidal geometries of the Fe2, while the cis-dppv in 2 coordinates Fe2 in an apical-basal manner. The electrochemistry of both complexes was investigated. The electron-withdrawing benzoate functionality on the bridgehead carbon of the propanedithiolate bridge shifts the oxidation and reduction potentials of 1 or 2 slightly. Both complexes can catalyze the reduction of protons from CF3COOH but with a higher efficiency for 2.  相似文献   

6.
Substitution of carbonyl ligands of the hydrogenase model complex [Fe2(μ-SeCH2CH(Me)CH2Se-μ)(CO)6] ( A ), by 1,1′-bis (diphenylphosphino)ferrocene (dppf), 1,2-bis (diphenylphosphino)benzene (dppbz) or 1,2-bis (diphenylphosphino)acetylene (dppac) is investigated. It is found that the reaction product depends on the diphosphine used. In the case of dppf, the product is an intramolecular bridged disubstituted complex [Fe2{μ-SeCH2CH(Me)CH2Se-μ}(CO)4{μ,κ11(P,P)-dppf}] ( 1 ), while the dppac-reaction produces an intermolecular bridged tetra-iron model [Fe2{μ-SeCH2CH(Me)CH2Se-μ}(CO)5]2{μ,κ11(P,P)-dppac} ( 2 ). However, the dppbz-reaction gives [Fe2{μ-SeCH2CH(Me)CH2Se-μ}(CO)42(P,P)-dppbz}] ( 3 ) in which the dppbz ligand is bonded to one Fe atom in a chelated manner. The newly prepared complexes ( 1 – 3 ) have been characterized by elemental analysis, IR, 1H-, 13C{H}-, 31P{H}-, 77Se{H}-NMR spectroscopy and X-ray structure determination. The electrochemical behavior of 2 and 3 , in absence and presence of acid, is described by cyclic voltammetric measurements in CH2Cl2.  相似文献   

7.
Five monophosphine‐substituted diiron propane‐1,2‐dithiolate complexes as the active site models of [FeFe]‐hydrogenases have been synthesized and characterized. Reactions of complex [Fe2(CO)6{μ‐SCH2CH(CH3)S}] ( 1 ) with a monophosphine ligand tris(4‐methylphenyl)phosphine, diphenyl‐2‐pyridylphosphine, tris(4‐chlorophenyl)phosphine, triphenylphosphine, or tris(4‐fluorophenyl)phosphine in the presence of the oxidative agent Me3NO·2H2O gave the monophosphine‐substituted diiron complexes [Fe2(CO)5(L){μ‐SCH2CH(CH3)S}] [L = P(4‐C6H4CH3)3, 2 ; Ph2P(2‐C5H4N), 3 ; P(4‐C6H4Cl)3, 4 ; PPh3, 5 ; P(4‐C6H4F)3, 6 ] in 81%–94% yields. Complexes 2 – 6 have been characterized by elemental analysis, spectroscopy, and X‐ray crystallography. In addition, electrochemical studies revealed that these complexes can catalyze the reduction of protons to H2 in the presence of HOAc.  相似文献   

8.
Abstract

In this article, five diiron 1,2-dithiolate complexes containing phosphine ligands are reported. Treatment of complex [Fe2(CO)6(μ-SCH2CH2S)] (1) with the phosphine ligands tris(4-methylphenyl)phosphine, tris(4-methoxyphenyl)phosphine, tris(3-chlorophenyl)phosphine, tris(3-methylphenyl)phosphine, or 2-(diphenylphosphino)biphenyl in the presence of Me3NO·2H2O as the decarbonylating agent afforded the target products [Fe2(CO)5(L)(μ-SCH2CH2S)] [L?=?P(4-C6H4CH3)3, 2; P(4-C6H4OCH3)3, 3; P(3-C6H4Cl)3, 4; P(3-C6H4CH3)3, 5; Ph2P(2-C6H4Ph), 6] in 80–93% yields. Complexes 26 have been characterized by elemental analysis, spectroscopy, and X-ray crystallography. Additionally, the electrochemical properties were studied by cyclic voltammetry.  相似文献   

9.
The reaction of complex [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)6 (1) with trans-1,2-bis(diphenylphosphino)ethylene (trans-dppv) in the presence of Me3NO?2H2O in CH2Cl2/CH3CN afforded complex {[μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)5}2(trans-dppv) (2) with a bridging dppv. Complex [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)4(cis-dppv) (3) was prepared by the reaction of 1 with cis-dppv and Me3NO?2H2O. The new complexes 2 and 3 were characterized by elemental analysis, spectroscopy, and X-ray diffraction analysis.  相似文献   

10.
Four new butterfly Fe/S cluster complexes bearing 2,6-(CH2)2C5H3N or (CH2)2 groups, as the active site models of [FeFe]-hydrogenase, have been prepared by condensation reaction and structurally characterized. Treatments of the parent complex Fe2(CO)6[(μ-SCH2)2CHCO2H] (A) with 2,6-(HOCH2)2C5H3N or HOCH2CH2OH in the presence of 4-dimethylaminopyridine and dicyclohexylcarbodiimide afforded the single-butterfly Fe/S complexes Fe2(CO)6[(μ-SCH2)2CHC(O)OCH2(2,6-C5H3N)CH2OH] (1) and Fe2(CO)6[(μ-SCH2)2CHC(O)OCH2CH2OH] (3) and the double-butterfly Fe/S complexes [Fe2(CO)6(μ-SCH2)2CHC(O)OCH2]2(2,6-C5H3N) (2) and [Fe2(CO)6(μ-SCH2)2CHC(O)OCH2]2 (4). The new complexes 14 were fully characterized by elemental analysis, ESI-MS, IR, and 1H (13C) NMR spectroscopy.  相似文献   

11.
Reaction of the parent complex (μ-PDT)Fe2-(CO)6 (A) (PDT = 1,3-SCH2CH2CH2S2?) with the bidentate N/P ligand [(Ph2P)2N(C6H4Cl-p)] in the presence of Me3NO as decarbonylating agent produced an unexpected iron–sulfur complex [(μ-PDT)Fe2(CO)5{PPh2(NHC6H4Cl-1,4)}] (1). Extending this chemistry further, two similar complexes [(μ-PDT)Fe2(CO)5{PPh2(NHC6H4NO2-1,4)}] (2) and [(μ-PDT)Fe2(CO)5{PPh2(NHC6H4CO2Et-1,4)}] (3) could be prepared from the simple substitution reactions of the precursor A with the monodentate N/P ligands Ph2P(NHC6H4NO2-1,4) and Ph2P(NHC6H4CO2Et-1,4), respectively. These new complexes, which can be considered as active site models of [FeFe] hydrogenases, have been characterized by elemental analysis, FTIR, and NMR (1H, 13C, 31P) spectroscopies, as well as by X-ray crystallography for complex 1.  相似文献   

12.
Reaction of [μ-SC6H3(CH3)S-μ]Fe2(CO)6 (1) with 1.5 equivalents of 1,1-bis(diphenylphosphino)methane (dppm) in toluene at reflux gave monosubstituted [μ-SC6H3(CH3)S-μ]Fe2(CO)5(dppm) (2) and disubstituted [μ-SC6H3(CH3)S-μ]Fe2(CO)4(dppm)2 (3) in 27 and 37% yields, respectively. Complexes 2 and 3 were characterized by elemental analysis, IR, NMR spectroscopy, and single crystal X-ray diffraction analysis.  相似文献   

13.
The reaction of [Fe(CO)2(PPh3)2{η2-SCNC(O)Ph}] with [Co(η-C5H5)(PPh3)2] in benzene solution at room temperature results in the facile cleavage of the CS bond of the SCNC(O)Ph ligand to give [{Co(η-C5H5)}2{Fe(CO)2(PPh3)}(μ3-S{μ3-CNC(O)Ph}], whereas [Fe(CO)2(PPh3)2(η2-SCNMe)] gives [{Co(η-C5H5)} 22{Fe(CO)(CNMe)(PPh3)(μ3-S)(μ3-CO)]. The structure of [{Co(η-C5H5)}2{Fe(CO)2(PPh3)} (μ3-CNC(O)Ph}] has been confirmed by X-ray diffraction.  相似文献   

14.
Treatment of [(μ-SCH2)2NPh]Fe2(CO)6 (A) with PPh3 or PPh2H in the presence of the decarbonylating agent Me3NO·2H2O afforded complexes [(μ-SCH2)2NPh]Fe2(CO)5(PPh3) (1) and [(μ-SCH2)2NPh]Fe2(CO)5(PPh2H) (2) in 87% and 74% yields, respectively. Complexes 1 and 2 were characterized by elemental analysis and various spectroscopic techniques. The molecular structures of 1 and 2 were further determined by X-ray crystallography. In both cases, the monophosphine ligand resides in an axial position of the square-pyramidal Fe atom and trans to the benzene ring of the azadithiolate ligand, in order to minimize steric repulsion. On the basis of electrochemical studies, all these complexes were found to catalyze proton reduction to H2 in the presence of acetic acid.  相似文献   

15.
A series of heteronuclear nickel‐iron complexes [Fe2(CO)6(μ‐SH)(μ3‐S){NiCl(PPh3)2}] ( 1 ), [Fe2(CO)6(μ‐SH)(μ3‐S){NiCl(dppe)}] ( 2 ), [Fe2(CO)63‐S)2{Ni(PPh3)2}] ( 3 ), [Fe2(CO)63‐S)2{Ni(dppe)}] ( 4 ) and [Fe2(CO)6(μ‐SPh)(μ3‐S){NiCl(dppe)}] ( 5 ) have been prepared. The structure of 4 has been determined by X‐ray crystallography. The central metal‐sulfur core of 4 has a trigonal bipyramidal shape with a NiFe2 base plane with two axial sulfur atoms. Each iron atom is 5‐coordinate forming a distorted square pyramid; the nickel is square planar coordinated by two sulfur atoms and two phosphorus atoms.  相似文献   

16.
A straightforward and efficient transformation of the Fe-S complex [(μ-SCH2NnPrCH2S)Fe2(CO)6] to its double phosphine coordinated analogues [(μ-SCH2NnPrCH2S)Fe2(CO)4(PR3)2] (R = Ph, Me) is described. The single crystal structure of the PPh3-disubstituted complex [(μ-SCH2NnPrCH2S)Fe2(CO)4(Ph3P)2] (3) showed that both of the phosphine ligands take an apical/apical instead of a basal/basal or an apical/basal configuration.  相似文献   

17.
The γ-hydroxypropyl-functionalised diiron dithiolate complex [Fe2(CO)6(μ-SCH2CH2CH2OH)2] is prepared upon thermolysis of Fe3(CO)12 and HO(CH2)3SH and further reaction with dppm (dppm = Ph2PCH2PPh2) affords [Fe2(CO)4(μ-dppm)(μ-SCH2CH2CH2OH)2]. From the reaction of Fe3(CO)12 with dppm(S2) a minor product is the tetrairon cluster, [{Fe2(CO)6(μ-SCH2CH2CH2OH)}24-S)], the mode of formation of which is unclear. It has been crystallographically characterised and adopts a μ4-S bridged double butterfly structure which is compared with other crystallographically characterised complexes of this type. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Reaction of [μ-SC6H3(CH3)S-μ]Fe2(CO)6 (1) with 2 equivalents of PPh3 gave the monosubstituted complex [μ-SC6H3(CH3)S-μ]Fe2(CO)5(PPh3) (2) plus the disubstituted [μ-SC6H3(CH3)S-μ]Fe2(CO)4(PPh3)2 (3), while the complexes [μ-SC6H3(CH3)S-μ]Fe2(CO)5[P(3-C6H4CH3)3] (4) and [μ-SC6H3(CH3)S-μ]Fe2(CO)5[P(4-C6H4F)3] (5) were prepared by the reactions of 1 with P(3-C6H4CH3)3 or P(4-C6H4F)3 in the presence of Me3NO. Complexes 35 were characterized by IR, NMR spectroscopy and single-crystal X-ray diffraction analysis. The molecular structures of 35 reveal that in each case, the phosphine ligand occupies the apical position in an overall distorted square pyramidal iron(I) complex geometry.  相似文献   

19.
Carbonyl substitution reactions of [μ-(SCH2)2CHC6H5]Fe2(CO)6 with bidentate phosphine ligands, cis-1,2-bis(diphenylphosphine)ethylene (cis-dppv) and N,N-bis(diphenylphosphine)propylamine [(Ph2P)2N-Pr-n], yielded an asymmetrically substituted chelated complex [(μ-SCH2)2CHC6H5]Fe2(CO)4(k 2-dppv) and a symmetrically substituted bridging complex [(μ-SCH2)2CHC6H5]Fe2(CO)4[μ-(PPh2)2N-Pr-n] under different reaction conditions. Both complexes were fully characterized by spectroscopic methods and by X-ray crystallography. Their electrochemical behaviors were observed by cyclic voltammetry, and the catalytic electrochemical reduction of protons from acetic or trifluoroacetic acid to give dihydrogen mediated by complex [(μ-SCH2)2CHC6H5]Fe2(CO)4(k 2-dppv) was investigated.  相似文献   

20.
Four diiron toluenedithiolate complexes 25 with monophosphine ligands are reported. Treatment of [μ-SC6H3(CH3)S-μ]Fe2(CO)6 (1) with tris(3-chlorophenyl)phosphine, tris(4-chlorophenyl)phosphine, tris(4-methylphenyl)phosphine or 2-(diphenylphosphino)benzaldehyde, and Me3NO?2H2O in MeCN resulted in the formation of [μ-SC6H3(CH3)S-μ]Fe2(CO)5[P(3-C6H4Cl)3] (2), [μ-SC6H3(CH3)S-μ]Fe2(CO)5[P(4-C6H4Cl)3] (3), [μ-SC6H3(CH3)S-μ]Fe2(CO)5[P(4-C6H4CH3)3] (4), and [μ-SC6H3(CH3)S-μ]Fe2(CO)5[Ph2P(2-C6H4CHO)] (5) in 64–82% yields. Complexes 25 have been characterized by elemental analysis, IR, 1H NMR, 31P{1H} NMR, 13C{1H} NMR and further confirmed by single crystal X-ray diffraction analysis. The molecular structures show that 25 contain a butterfly diiron toluenedithiolate cluster coordinated by five terminal carbonyls and an apical monophosphine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号