首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
In the present study, commercially important high-performance polymers and their composites have been investigated with respect to photon interactions as means of mass attenuation coefficient (μ/ρ), mean free path (MFP), half-value layer (HVL), effective atomic number (Zeff), effective electron density (Neff), and energy absorption and exposure buildup factors (EABF and EBF) at different photon energies. For this purpose, sample plates were prepared by extrusion and injection techniques using polyethersulfone, polyetherimide, acrylonitrile butadiene styrene copolymer, polyamide 66, polyphthalamide, and polypropylene copolymers as high-performance polymers and glass and carbon fibers as reinforcement. The (μ/ρ)s of the materials were measured at 81 and 356?keV photon energies to determine MFP, HVL, Zeff, and Neff. The theoretical values of these parameters were calculated via ZXCOM, WinXCom and Monte Carlo N-Particle simulation code (MCNP), and a good agreement was obtained between WinXCom–MCNP and MCNP–Exp. Finally, EABFs and EBFs of the samples were calculated up to around 40 MFP in the energy region 0.015–15?MeV and significant variations were observed in the continuous energy and MFP regions.  相似文献   

2.
The present work emphasizes on the transmission of gamma photons, having energies in the range (241.8–401.8 keV) obtained by Compton scattering technique, to determine mass-attenuation coefficients (μm), molar-extinction coefficients (ε), mass-energy absorption coefficient (μen/ρ), effective atomic number (Zeff), mean free path (MFP), half value layer (HVL), total atomic (σt.a) and electronic (σt.el) cross-sections, and Hounsfield number (H) of various organic compounds like Alcohols, Aldehydes, Ketones, Esters, Amines, Benzene compounds and Water, and further used as radiation shielding. The WinXcom software package is used to compare the experimentally deduced radiation interaction parameters with theory. The theoretical and experimental results are in good agreement within permissible experimental uncertainty. The radiation shielding parameters have been found to vary with gamma-ray energy and effective atomic number for these organic compounds under present investigations.  相似文献   

3.
ABSTRACT

The present research focused on the investigation of photon and fast neutron shielding parameters of colemanite mineral doped and undoped concretes. The fabricated concretes have been exposed to gamma rays at 59.5 and 81?keV energies and the measurements have been carried out with NaI(Tl) detector. The parameters of effective atomic number (Zeff) and electron density (Nel) have been determined experimentally and theoretically. The exposure buildup factor (EBF) and energy absorption buildup factor (EBF) have been computed utilizing the Geometric progression (G–P) fitting method. In addition to the photon shielding parameters, the macroscopic effective removal cross-section calculations for fast neutron (ΣR) were performed. As a result, it was observed that the concretes doped with colemanite mineral are not very effective in gamma radiation shielding. On the contrary, it was observed that concretes with colemanite were more effective in shielding fast neutrons and the fast neutron removal cross-section values increased with increasing colemanite concentration in the concrete. Additionally, compressive strength values (MPa) of concretes were tested using ALFA TESTING (B001-PC) 200 tons capacity device.  相似文献   

4.
Radiation interaction parameters such as total stopping power, projected range (longitudinal and lateral) straggling, mass attenuation coefficient, effective atomic number (Zeff) and electron density (Neff) of some shielding materials were investigated for photon and heavy charged particle interactions. The ranges, stragglings and mass attenuation coefficients were calculated for the high-density polyethylene(HDPE), borated polyethylene (BPE), brick (common silica), concrete (regular), wood, water, stainless steel (304), aluminum (alloy 6061-O), lead and bismuth using SRIM Monte Carlo software and WinXCom program. In addition, effective atomic numbers (Zeff) and electron densities (Neff) of HDPE, BPE, brick (common silica), concrete (regular), wood, water, stainless steel (304) and aluminum (alloy 6061-O) were calculated in the energy region 10?keV–100?MeV using mass stopping powers and mass attenuation coefficients. Two different methods namely direct and interpolation procedures were used to calculate Zeff for comparison and significant differences were determined between the methods. Variations of the ranges, longitudinal and lateral stragglings of water, concrete and stainless steel (304) were compared with each other in the continuous kinetic energy region and discussed with respect to their Zeffs. Moreover, energy absorption buildup factors (EABF) and exposure buildup factors (EBF) of the materials were determined for gamma rays as well and were compared with each other for different photon energies and different mfps in the photon energy region 0.015–15?MeV.  相似文献   

5.
The gamma-ray shielding behaviour of a material can be investigated by determining its various interaction and energy-absorption parameters (such as mass attenuation coefficients, mass energy absorption coefficients, and corresponding effective atomic numbers and electron densities). Literature review indicates that the effective atomic number (Zeff) has been used as extensive parameters for evaluating the effects and defect in the chosen materials caused by ionising radiations (X-rays and gamma-rays). A computer program (Zeff-toolkit) has been designed for obtaining the mean value of effective atomic number calculated by three different methods. A good agreement between the results obtained with Zeff-toolkit, Auto_Zeff software and experimentally measured values of Zeff has been observed. Although the Zeff-toolkit is capable of computing effective atomic numbers for both photon interaction (Zeff,PI) and energy absorption (Zeff,En) using three methods in each. No similar computer program is available in the literature which simultaneously computes these parameters simultaneously. The computed parameters have been compared and correlated in the wide energy range (0.001–20?MeV) for 10 commonly used building materials. The prominent variations in these parameters with gamma-ray photon energy have been observed due to the dominance of various absorption and scattering phenomena. The mean values of two effective atomic numbers (Zeff,PI and Zeff,En) are equivalent at energies below 0.002?MeV and above 0.3?MeV, indicating the dominance of gamma-ray absorption (photoelectric and pair production) over scattering (Compton) at these energies. Conversely in the energy range 0.002–0.3?MeV, the Compton scattering of gamma-rays dominates the absorption. From the 10 chosen samples of building materials, 2 soils showed better shielding behaviour than did other 8 materials.  相似文献   

6.
ABSTRACT

Because of the high radiation dose in applications involving nuclear reactors, medical treatments etc., it is important to reduce the exposure to radiation of areas and workers. In this study, we were examined gamma ray shielding parameters of the newly produced Re-based superalloys. Mass attenuation coefficient (µ/ρ) of the alloys were obtained experimentally at 81, 276, 302, 356, 383 keV photon energies emitted from 133Ba radioactive source using Ultra Ge detector. The experimental results were compared with the values obtained by the WinXCOM program and were found to be in perfect agreement with each other. Additionally, effective atomic number (Zeff) and electron density (Neff) were determined for produced Rhenium (Re) based super alloys in the energy range 1 keV–100?GeV. S5 sample which has maximum Rhenium percentage own the largest µ/ρ and Zeff values. Moreover, by using Geometric Progression (GP) approximation, EABF and EBF were computed for the superalloys depending on the energy and penetration depths. It has been deduced that the values of EABF and EBF are minimum in the medium energy region. EBF and EABF values of the alloys have changed depending on the equivalent atomic number. Among alloy samples under study, S5 superalloy is the best for gamma ray shielding. However, in general, considering the radiation energies used in many applications, all the alloys under study have satisfactory radiation absorption properties.  相似文献   

7.
《Current Applied Physics》2018,18(6):717-727
Several physical parameters such as the packing density (PD), oxygen molar volume (OMV), oxygen packing density (OPD) and the elastic moduli of the quaternary glass system xPbO-(30-x)SiO2-46.67B2O3-23.33Na2O (x = 0, 5, 10 and 15 mol%) have been evaluated. The elastic moduli were computed according to Makishima-Mackenzie model and Rocherulle model. The values of these moduli have been compared to their experimental values. Moreover, different shielding parameters such as mass attenuation coefficients (MAC), half value layer (HVL), mean free path (MFP), effective atomic numbers (EAN), effective electron densities (EED) and buildup factors have been evaluated using the WinXcom program in the energy range 0.015–15 MeV for the quaternary studied glass system. The MAC values have been compared with MCNPX (version 2.6.0) Monte Carlo code. Besides, mass stopping power (MSP) for proton, alpha and electron as well as the removal cross section for fast neutron (∑R) have been calculated. The results observed that the composition has the highest value of PbO (15 mol %) showed excellent nuclear radiation shielding and elastic properties.  相似文献   

8.
The probability of gamma or X-ray interactions with important 14 antioxidants have been discussed for total photon interactions in the wide energy range of 1?keV–100?GeV using the WinXCOM code. The variations of mass attenuation coefficient (μρ), effective atomic number (Zeff) and electron density (Nel) with photon energy were plotted for total photon interactions. It was found that the values of μρ, Zeff and Nel depend on the incoming photon energy and chemical compositions of antioxidant. The highest values of these parameters were found at a low-energy zone where the photoelectric effect is the dominant interaction process. When antioxidants were compared with each other, it was seen that Zeff has the highest values for Oenin chloride and Delphinidin chloride which contain the Cl element. This investigation is thought to be useful for medical applications where radiation exposure is present.  相似文献   

9.
High‐intensity X‐ray beams are usually characterized by their kVp (kilovoltage peak) value and half‐value layer (HVL). While the first parameter is reasonably well known (apart from accelerating potential fluctuations), on the second, there is a greater deal of uncertainty. The HVL depends on the used filtration, the effective kVp value and on some of the X‐ray tube mechanical features, such as the anode angle. This last parameter is not always provided by the tube manufacturer, so we may question if the HVL dependence on the anode angle can be used to extract information on this angle. We tried to give an answer to this question using two different numerical models and a full Monte Carlo (MC) program to simulate the photon field produced by the X‐ray tube for several anode angles. One of the numerical models was developed by the Institute of Physics and Engineering in Medicine and gives X‐ray spectra and HVL values for a wide range of kVp values and anode angles. The other model, named SpekCalc, is based on a theoretical work developed by Gavin Poludniowski and Phil Evans. The MC simulation was done using the PENELOPE code for coupled electron‐photon transport. Using the computed photon spectra, HVLs were obtained and compared with experimental HVL values obtained with a Philips PW 2184/00 X‐ray tube with a 26° tungsten anode and accelerating potentials in the range of 40–90 kVp. We are now able to show the PENELOPE simulation can deliver the correct anode angle value. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The present work was carried out to find out the gamma ray shielding properties and to study the effects using an NaI (Tl) detector using radioactive sources 57Co, 133Ba, 137Cs, 54Mn, 60Co and 22Na at energies 122, 356, 511, 662, 840, 1170, 1275 and 1330?keV, for some chemicals, namely, sodium thiosulfate (Na2S2O3), benzoic acid (C7H6O2), sodium hydroxide (NaOH), poly vinyl alcohol (PVA) (C2H4O), potassium nitrate (KNO3), naphthalene (C10H8). Mass attenuation coefficient (µm) values obtained from the experiment were used to determine the effective atomic numbers (Zeff) and effective electron densities (Neff), atomic cross-sections (σt) and electronic cross-sections (σe); it will be observed from the present work that the variation in the obtained values is only due to the increase or decrease in the gamma ray energy and the chemical composition of the sample. It was seen that the calculated and obtained values showed good agreement. The investigated data are useful in the electronic industry, plastic industry, building materials and agriculture fields. From the present work it was found that the PVA could be used as a better gamma shielding material.  相似文献   

11.
Rapid technological advancement has multiplied people’s exposure to ionizing radiations greatly. Widespread applications of radiation in different fields (such as agriculture, radiation therapy and scientific research fields) require that humans be protected against unnecessary exposure. In this study, mass attenuation coefficient (μm), half-value layer, mean-free path, effective atomic number (Zeff) and exposure buildup factor have been calculated for xBaO–20ZnO–(80???x)B2O3 (x?=?5, 10, 15, 20 and 25?mol%) glass systems. The mass attenuation coefficients of the selected glasses were calculated using simulation method of MCNP5 code. The simulation results have been compared with the experimental data and Xcom at the energies 223.02, 252.98, 287.28, 340.83, 398.97, 481.59, 562.68 and 662.00?keV. The agreement amounts of the mass attenuation coefficient values are from 0.2% to 2.8% and from 0.2% to 6.98% for MCNP5 and Xcom relative to experimental results, while the Monte Carlo program values are higher than that obtained by experimental data, using Xcom and MCNP5 code. The glass sample having the highest value of BaO content show high radiation shielding properties. It indicates that the MCNP5 code can be used for estimation of radiation interaction parameters where experimental results are not available.  相似文献   

12.
We have computed γ-ray exposure buildup factors (EBF) of some building materials; glass, marble, flyash, cement, limestone, brick, plaster of paris (POP) and gypsum for energy 0.015–15 MeV up to 40 mfp (mfp, mean free path) penetration depth. Also, the macroscopic effective removal cross-sections (ΣR) for fast neutron were calculated. We discussed the dependency of EBF values on photon energy, penetration depth and chemical elements. The half-value layer and kinetic energy per unit mass relative to air of building materials were calculated for assessment of shielding effectiveness. Shielding thicknesses for glass, marble, flyash, cement, limestone and gypsum plaster (or Plaster of Paris, POP) were found comparable with ordinary concrete. Among the studied materials limestone and POP showed superior shielding properties for γ-ray and neutron, respectively. Radiation safety inside houses, schools and primary health centers for sheltering and annual dose can be assessed by the determination of shielding parameters of common building materials.  相似文献   

13.
In this work, we examined the usefulness of the WCx/Al100?x composites (x?=?10, 20, 50, 80 wt. %) for gamma-ray shielding materials. The mass attenuation coefficient (μ/ρ), effective atomic number (Zeff), electron density (Ne) and energy absorption buildup factor (EABF) and exposure buildup factor (EBF) for WCx/Al100?x composites have been calculated by theoretical approach using XCOM program within the energy range 1?keV–100?GeV, 10 keV–1?GeV, 10 keV–1?GeV and 0.015?MeV–15?MeV, respectively. The results showed that both the values of mass attenuation coefficient and Zeff of the WCx/Al100?x composites tend to increase with the increase of the WC concentration. For the energy region below 3?MeV, the WC80/Al20 composite was found to possess superior gamma-ray shielding effectiveness due to its higher values of both mass attenuation coefficient and effective atomic number, and lower values of both EABF and EBF values. However, for the energy region above 3?MeV, the EBF and EABF values of the WC/Al composites are directly proportional to their Zeff values, leading to the lowest EBF and EABF values of the WC10/Al90 composites.  相似文献   

14.
The backscattered peak and albedos are important for the estimation of exposure distribution and for better understanding the phenomenon of the backscattering of gamma photons. To characterize the backscattering probability of gamma photons interacting with different atomic numbers (Z), number (A N), energy (A E) and dose (A D) albedos are experimentally evaluated. The response function converts the observed pulse-height distribution of a NaI(Tl) scintillation detector to a true photon spectrum. For each of the incident gamma photon energies, the number and energy albedos show an increase with the increasing target thickness, and finally saturate. The energy albedos are found to be decreasing with the increase in the atomic number of the target material and incident gamma photon energy. The dose albedos do not differ significantly from the energy albedos for the chosen incident gamma photon energies.  相似文献   

15.
The effective atomic numbers (Z eff) and electron density (N el) of some hormones such as testosterone, methandienone, estradiol and rogesterone for total and partial photon interactions have been computed in the wide energy region 1 keV–100 GeV using an accurate database of photon-interaction cross sections and the WinXCom program. The computed Z eff and N el are compared with the values generated by XMuDat program. The computer tomography (CT) numbers and kerma values relative to air are also calculated and the computed data of CT numbers in the low-energy region help in visualizing the image of the biological samples and to obtain precise accuracy in treating the inhomogenity of them in medical radiology. In view of dosimetric interest, the photon absorbed dose rates of some commonly used gamma sources (Na-21, Cs-137, Mn-52, Co-60 and Na-22) are also estimated.  相似文献   

16.
Abstract

The fast neutron and gamma ray spectra measured behind different thickness of steel scrap concrete with density of 4 g/cm3 have been studied. The mix proportions by weight of this type of concrete were 1 cement: 6.89 steel scrap: 2.9 sand and 0.5 Water. Comparison with a standard ordinary concrete of density 2.3 g/cm3 have been carried out. The measurements were made using a collimated beam of both gamma rays and neutrons emitted from one of the horizontal channel of the Egyptian Research Reactor-1. A fast neutron and gamma ray spectrometer with a stilbene crystal was used to measure the spectra of fast neutrons and gamma rays. Pulse shape discrimination using the zero cross over technique was used to separate the photon pulses from the electron pulses. The equation due to Schmidt has been modified and applied for determining the neutron effective removal cross sections (~R) for steel scrap, ordinary, hematite–serpentine, ilmenite–limonite and ilmenite concretes. This equation gives results which are in good agreement with the measured values. The derived empirical equation in a previous work to calculate the neutron integral flux behind different thicknesses of different types of concretes, gives good results for steel scrap concrete under investigation comparing with the corresponding experimental data. Total neutron macroscopic cross sections, linear attenuation coefficients for gamma rays and the half-value layers for both radiations at different energies have been obtained for steel scrap concrete and comparing with the corresponding values of ordinary concrete. The results show that steel scrap concrete is better than ordinary, hematite–serpentine, ilmenite–limonite and ilmenite concretes from the radiation shielding point of view.  相似文献   

17.
The objective of this work is focused on development of a classification tool for identifying soil texture based on photon attenuation interaction atomic cross‐section data. The total mass attenuation coefficients (μ/ρ) and the atomic cross sections (σa) of soils with different textures have been calculated for total photon interactions in a wide energy range (1 keV to 100 GeV). The values of these parameters have been found to change with soil composition in low energies (1–100 keV), whereas their behavior has been found to be similar at all energies. Slight differences were observed in σa in the energy range of 0.01 to 10 MeV and more pronounced ones from 10 MeV to 100 GeV. Regarding μ/ρ, only small differences were observed among soils for all the energy range investigated. Differences between μ/ρ and σa considering different proportions of Fe2O3 and SiO2 were also observed. The reported data should be useful for studying soil texture according photo attenuation. The results of this work can stimulate research for all types of soil texture. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The effective atomic number (Zeff) and effective electron density (Neff) of eight heavy metal oxide (HMO) glasses have been determined using the Monte Carlo simulation code MCNP for the energy range of 10?keV–10?MeV. The interpolation method was employed to extract Zeff and Neff values from the simulation and that calculated with the help of XCOM program. Comparisons are also made with predictions from the Auto-Zeff software in the same energy region. Wherever possible, the simulated values of Zeff and Neff are compared with experimental data. In general, a very good agreement was noticed. It was found that the Zeff and Neff vary with photon energy and do not have extended intermediate regions where Compton scattering is truly dominating; only dips slightly above ~1.5?MeV were recorded. Zeff and Neff are found to increase with PbO and Bi2O3 contents. It was found that the Zeff value rather than the Neff value is a better indicator for PbO and/or Bi2O3 contents.  相似文献   

19.
One sign of a vibrant Bangladeshi economy has been the move away from the use of more traditional housing materials towards a preference for modern constructional media. Glass, one such example, used both decoratively and in a structural context, offers various advantageous properties and facets including a protective feature against radiation that has not previously been considered. Current interest examines the dosimetric possibilities offered by the commercial glass as a secondary shield and also in retrospective ionising radiation exposure analysis. Four popular brands of window glass are investigated, all available within the local market (PHP-Bangladesh, Usmania-Bangladesh, Nasir-Bangladesh and Rider-China), all with the same thickness and colour, varying in terms of elemental weight fractions as evaluated by energy dispersive X-ray analysis. As potential attenuators of transmitted radiation thereby forming secondary barriers against radiation exposure from penetrating radiations, the four brands of glass have been studied using photon energies from 59 up to 1332 keV, a range of values representative of that potentially encountered in incidents. Use has been made of a well-shielded high-purity germanium γ-ray spectrometer and associated electronics, providing for evaluation of the characteristic barrier parameters of half-value layer, radiation protection efficiency and effective atomic number (Zeff). Of the four brands investigated, Rider provides superior secondary shielding performance. Concerning potential retrospective dosimetry the effective atomic number of the glass samples are comparable with that of the commercial thermoluminescence (TL) dosimeter TLD-200. At high doses, the TL yields are sufficient to provide for retrospective accident dosimetry.  相似文献   

20.
The temperature dependence of low-energy electron diffraction (LEED) intensities has often been interpreted with kinematic theory in terms of an effective Debye temperature θDeff of the surface atoms. The validity of this procedure, often questioned in the literature, is tested with a computer experiment in which LEED spectra are calculated from dynamical theory (layer-KKR method) for a model of Ag{111} with a given value of θDeff and then the usual kinematic formulae are used to re-extract the value of θDeff. The results of the experiment indicate that this procedure yields rough values of the surface Debye temperature for electron energies higher than about 40 eV, which fluctuate substantially and tend to be somewhat smaller than that originally introduced into the model. At energies lower than about 40 eV the kinematically deduced values of θDeff are too large by 10 to 15 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号