首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The reactions of octachlorocyclotetraphosphazatetraene, N4P4Cl8 (1) with difunctional aliphatic reagent, HO-(CH2)5-OH (3) have aroused a good deal of attention, and four types of products have been realized: one 2-open chain-(1′-oxy-5′-hidroxy-pentane)-2,4,4,6,6,8,8-heptachlorocylotetraphosphazatetraene, N4P4Cl7[O(CH2)5OH] (4); one 2,2-mono-spiro-(1′,5′-pentanedioxy)-4,4,6,6,8,8-hexachlorocyclotetraphosphazatetraene, N4P4Cl6[O(CH2)5O] (5); its isomers 2,4-mono-ansa-((1′,5′-pentanedioxy)-2,4,6,6,8,8- hexachlorocyclotetraphosphazatetraene (6) and 2,6-mono-ansa-(1′,5′-pentanedioxy)-2,4,6,6,8,8-hexachlorocyclotetraphosphazatetraene (7); one 2,2,6,6-dispiro-(1′,5′-pentanedioxy)-4,4,8,8-tetrachlorocyclo- tetraphosphazatetraene, N4P4Cl4[O(CH2)5O]2 (8); two isomeric 2,4,6,8-bisansa-(1′,5′-pentanedioxy)-2,4,6,8-tetrachlorocyclotetraphosphazatetraene (9) and 2,6,4,8-bisansa-(1′,5′-pentanedioxy)-2,4,6,8-tetrachloro-cyclotetraphosphazatetraene (10); one 4,4,8,8-dispiro-2,6-ansa- (1′,5′-pentanedioxy)-2,6-dichlorocyclotetra-phosphazatetraene, N4P4Cl2[O(CH2)5O]3 (11), one 2,2,4,4,6,6-trispiro-(1′,5′-pentanedioxy)-8,8-dichlorocyclo-tetraphosphazatetraene, N4P4Cl2[O(CH2)5O]3 (12); and a 2,2,4,4,6,6,8,8-tetraspiro-(1′,5′-pentanedioxy)-cyclotetraphosphazatetraene derivative, N4P4[O(CH2)5O]4, (13). The respective structures were deduced by means of elemental analysis, mass spectrum, and 31P, 1H, and 13C nuclear magnetic resonance spectroscopic investigations.  相似文献   

2.
Reactions of hexachlorocyclotriphosphazene N3P3Cl6 (1) with 1,4-butane-(2) and 1,6-hexane-diols (3) in (1:1:2, 1:2:4, and 1:3:6) stoichiometries in THF solution at room temperature (r.t.) and under refluxing conditions yield a total of 15 products: two open chain, N3P3Cl5[O(CH2)nOH] (n = 4, 6) (4, 5), two mono-spiro, N3P3Cl4[O(CH2)nO] (n = 4, 6) (6, 7), two mono-ansa, N3P3Cl4[O(CH2)nO] (n = 4,6) (8, 9), two dispiro, N3P3Cl2[O(CH2)nO]2 (n = 4, 6) (10, 11), two spiro-ansa, N3P3Cl2[O(CH2)nO]2 (n = 4, 6) (12, 13), one tri-spiro, N3P3[O(CH2)4O]3 (14), two single-bridged, N3P3Cl5[O(CH2)nO]N3P3Cl5 (n = 4, 6) (15, 16), one double-bridged, N3P3Cl4[O(CH2)6O]2N3P3Cl4 (17), and one tri-bridged, N3P3Cl3[O(CH2)6O]3N3P3Cl3 (18) derivatives. Their structures have been elucidated by MS, 31P, and 1H NMR spectroscopy. The results obtained, based on the synthesis, characterization, product types, and the relative yields, are compared with those of previous studies on the reactions of 1 with 1,2-ethane-, 1,3-propane-, 1,4-butane-, 1,5-pentane-, and 1,6-hexane-diols.  相似文献   

3.
Abstract

Reactions of non-gem-hexanedioxytetrachlorocyclotriphosphazene (1) with monofunctional nucleophilic reagents, 2-(2-hydroxyethyl)thiophene (2), benzyl alcohol (3) and 1,1,3,3-tetramethylguanidine (4) were investigated. The reactions, using an excess of NaH, in THF solutions, under refluxing conditions and with 1:2?mole ratios allow the synthesis of the following novel cyclotriphosphazene derivatives: 2,4-dichloro-2,4-(hexane-1,6-dioxy)-6,6-[2-(2-ethoxy)hiophene]-cyclotriphosphazatriene, N3P3Cl2[O(CH2)6O-(C6H8OS)2] (5); 2,4-(hexane-1,6-dioxy)-2,4,6,6-[2-(2-ethoxy) thiophene]-cyclotriphosphazatriene, N3P3[O(CH2)6O-(C6H8OS)4] (6); 2,4-dichloro-2,4-(hexane-1,6-dioxy)-6,6-(methoxybenzene)-cyclotriphosphazatriene, N3P3Cl2[O(CH2)6O-(C6H5CH2O)2] (7); 2,4-(hexane-1,6-dioxy)-2,4,6,6-(methoxybenzene)-cyclotriphosphazatriene, N3P3[O(CH2)6O-(C6H5CH2O)4] (8); and 2,4-dichloro-2,4-(hexane-1,6-dioxy)-6,6-(1,1,3,3-tetramethyguanidine)-cyclotriphosphazatriene, N3P3Cl2[O(CH2)6O-HN-CN2(CH3)4] (9). The structures of the synthesized compounds (5–9) have been characterized by elemental analysis, TLC-MS, 1H, 13C and 31P {+1H} and {?1H} NMR spectral data.  相似文献   

4.
Abstract

The reactions of hexachlorocyclotriphosphazatriene, N3P3Cl6 (1) with 2-mercaptoethanol, 2-HS-CH2-CH2-OH (2), in (1:1, 1:2 and 1:3) mole ratios, in excess of NaH, in THF and diethylether solutions yield a total of 6 novel products: one mono spiro, N3P3Cl4[O-CH2-CH2-S] (3); one mono-substituted open chain, N3P3Cl5[S-CH2-CH2-OH] (4); one dispiro, N3P3Cl2[O-CH2-CH2-S]2 (5); one tri-substituted open chain, N3P3Cl3[S-CH2-CH2-OH]3 (6); one tris-spiro, N3P3[O-CH2-CH2-S]3 (7) and one disubstituted open chain, N3P3Cl4[S-CH2-CH2-OH]2 (8) derivatives. The spiro products (3, 5 and 7) are formed as the major products in this system and all of the synthesized compounds are found to be stable at room temperature. The structures of the derived compounds were elucidated by elemental analysis, TLC-MS, 31P and 1H NMR spectral data. For evaluation of melting behavior of derivatives (6) and (7), thermal transition peaks and their corresponding enthalpies were determined via DSC technique.  相似文献   

5.
Abstract

From the reactions of hexachlorocyclotriphosphazatriene, N3P3Cl6 (1) with pentane-1,5-diol (2) in dichloromethane solution, the following derivatives have been isolated: 2,2-spiro(1′,5′-pentanedioxy)-4,4,6,6-tetrachlorocyclotriphosphazatriene, N3P3Cl4[O(CH2)5O] (3); its ansa isomer, 1,3-ansa(1′,5′-pentanedioxy)-1,3,5,5-tetrachlorocyclotriphosphazatriene, (4); bis spiro(1′,5′-pentanedioxy)-6,6-dichlorocyclotriphosphazatriene, N3P3Cl2[O(CH2)5O]2 (5); its spiro-ansa isomer, (1′,5′-pentanedioxy)-1,3-dichlorocyclotriphosphazatriene (6); as well as the bino(1,5-pentanedioxy)-di-(pentachlorocyclotriphosphazatriene), N3P3Cl5 [O(CH2)5O]N3P3Cl5 (7), and tri-bino(1,5-pentanedioxy)-di (trichlorocyclotriphosphazatriene), N3P3Cl3[O(CH2)5O]3N3P3Cl3, (8) derivatives. Their structures were established by MS and NMR with the use of 1H, 13C, and 31P spectroscopy. Product types and relative yields are compared with those of the previously investigated diol derivatives. The yield of the mono-ansa product (25%) obtained in this system was considerably increased relative to those of the propane-1,3-diol derivative (11.2%) and decreased relative to the 2,2-dimethyl-propane-1,3-diol (36.2%), and bis(2-hydroxyethyl) ether (34.5%) derivatives.  相似文献   

6.
Abstract

The reactions of hexachlorocyclotriphosphazene, N3P3Cl6 (1), with 2,2-dimethylpropane-1,3-diol (2), and bis(2-hydroxyethyl) ether (3) have been previously reported. Although both reactions gave the expected spiro, ansa, and bridged type products, open-chain and triply bridged derivatives from both systems and singly bridged derivatives from 2,2-dimethylpropane-1,3-diol (2) were not isolated, and doubly bridged compounds were only detected in trace amounts in both systems. However, in a subsequent reinvestigation in tetrahydrofuran (THF) solution, the reaction of 1 with the diols 2 and 3 gave the open chain compounds N3P3Cl5[O(CH2)2CMe2OH] (4) and N3P3Cl5[(OCH2CH2)2OH] (5), the singly bridged compound N3P3Cl5[(OCH2)2-CMe2]N3P3Cl5 (6), the doubly bridged compounds N3P3Cl4[(OCH2)2CMe2]2N3P3Cl4 (8) and N3P3Cl4[(OCH2CH2)2O]2N3P3Cl4 (9), and the triply bridged compounds N3P3Cl3[(OCH2)2-CMe2]3N3P3Cl3 (10) and N3P3Cl3[(OCH2CH2)2O]3N3P3Cl3 (11).

The doubly bridged derivatives were also isolated in better yields relative to earlier reports. The substituted cyclotriphosphazenes have been characterized by elemental analysis, mass spectrometry, as well as by 1H, 31P, and 13C NMR spectroscopy. It is found that with variation of the solvent there is a decrease in the product formed by intramolecular reactions (spiro and ansa derivatives) and a concomitant increase in the amount of products formed by intermolecular reactions (singly, doubly, and triply bridged derivatives) of cyclophosphazene.  相似文献   

7.
Abstract

The reactions of hexachlorocyclotriphosphazene, N3P3Cl6 (1) with 1,1,3,3-tetramethyl-guanidine (2) in (1:1:2, 1:2:4 and 1:3:6) stoichiometries in THF and dichloromethane solutions under reflux yield a total of 4 novel products: three non-geminal derivatives, N3P3Cl4[NCN2(CH3)4]2 (3), N3P3Cl3[NCN2(CH3)4]3 (4) and N3P3Cl2[NCN2(CH3)4]4 (5); and one hexa-substituted product, N3P3[NCN2(CH3)4]6 (6). The structures of 3-6 have been determined mainly by elemental analysis, MS, 31P and 1H NMR spectral data. Furthermore, thermal characteristics of the synthesized compounds 4 and 6 were evaluated using Differential Scanning Calorimetric (DSC) measurements. NMR spectroscopic data, product types and relative yields are compared with those of the previously investigated derivatives of N3P3Cl6 (1) with mono and difunctional reagents.  相似文献   

8.
Abstract

The synthesis of new derivatives of bis-(tetrachlorocyclotriphosphazenyl)-spermine was achieved upon reaction of some MONOSPIRO–N3P3Cl4[HN–(CH2) n –NH] (n = 2,3,4) derivatives and of the gem–N3P3Az2Cl4 with spermine. All compounds were obtained in the monomeric state. 31P and 13C high-resolution NMR were used, together with IR spectroscopy and mass spectrometry, to assign molecular structures and to reveal conformational equilibria, if any.  相似文献   

9.
Two new Ni(II) complexes of 2,6-bis[1-(2,6-diethylphenylimino)ethyl]pyridine (L1), 2,6-bis[1-(4-methylphenylimino)ethyl]pyridine (L2 ) have been synthesized and structurally characterized. Complex Ni(L1)Cl2?·?CH3CN (1), exhibits a distorted trigonal bipyramidal geometry, whereas complex Ni(L1)(CH3CN)Cl2 (2), is six-coordinate with a geometry that can best be described as distorted octahedral. The catalytic activities of complexes 1, 2, Ni{2,6-bis[1-(2,6-diisopropyl-phenylimino)ethyl]pyridine} Cl2?·?CH3CN (3), and Ni{2,6-bis[1-(2,6-dimethylphenylimino) ethyl]pyridine}Cl2?·?CH3CN (4), for ethylene polymerization were studied under activation with MAO.  相似文献   

10.
Formation and N.M.R.-Spectroscopic Characterization of Alk-(ar-)oxy Derivatives of Trichlorophosphazene-N-phosphoryldichloride, Cl3P?N? P(O)Cl2, Imido- and N-Methylimidodiphosphoryltetrachloride, Cl2P(O)NHP(O)Cl2 and Cl2P(O)N(CH3)P(O)Cl2 The ester chlorides and esters P2NOCl5?x(OR)x (x = 1?5), P2(NH)O2Cl4?x(OR)x (x = 1–4) and P2(NCH3)O2Cl4–x(OR)x (x = 1–4) derived from the title compounds by substitution of chlorine atoms by alk- or aroxy groups are characterized by their 31P-n.m.r. data. The possibilities for forming these compounds by alcoholysis, chloridolysis, dealkylation and P? N-bond formation are discussed.  相似文献   

11.
Hexakis[bis(2-aminoethoxy)methylsilylethyl]benzene and hexakis[bis(N,N-dimethyl-2-aminoethoxy)methylsilylethyl]benzene C6[(NR2CH2CH2O)2SiMeCH2CH2]6 (4, R = H; 5, R = Me) were prepared from hexakis(methyldichlorosilylethyl)benzene C6(Cl2MeSiCH2CH2)6 and 2-aminoethanol or N,N-dimethyl-2-aminoethanol, respectively. Compounds 4 and 5 react with anhydrous cobalt (ii) chloride to give poorly soluble dodecachloro{hexakis[bis(2-aminoethoxy)methylsilylethyl]benzene}hexacobalt and dodecachloro{hexakis[bis(N,N-dimethyl-2-aminoethoxy)methylsilylethyl]benzene}hexacobalt {Co6[(NR2CH2CH2O)2SiMeCH2CH2]6C6}Cl12 (R = H or Me), respectively. Polyfunctional amine 4 reacts with dicobalt octacarbonyl to produce hexakis[bis(2-aminoethoxy)methylsilylethyl]benzenedicobalt(ii) tetrakis(tetracarbonylcobaltate) {Co2[(NH2CH2CH2O)2SiMeCH2CH2]6C6}[Co(CO)4]4. N,N-Dimethyl-substituted polyfunctional amine 5 is lowly reactive in the reaction with Co2(CO)8, whereas the simplest model of this compound, viz., bis(N,N-dimethyl-2-aminoethoxy)dimethylsilane (NMe2CH2CH2O)2SiMe2, slowly reacts with Co2(CO)8 to give tris[bis(N,N-dimethyl-2-aminoethoxy)dimethylsilane]cobalt(ii) bis(tetracarbonylcobaltate) {Co[(NMe2CH2CH2O)2SiMe2]3}[Co(CO)4]2. Thermal decomposition and transformations of the resulting complexes under the action of oxygen and water were studied.  相似文献   

12.
Reaction of hexachlorocyclotriphosphazene, N3P3Cl6 (1), with the sodium derivative of the fluorinated diol, 2,2,3,3,4,4,5,5-octafluorohexane-1,6-diol, (2), in THF solution at room temperature afforded five products, whose structures have been characterised by 1H, 19F and 31P NMR spectroscopy: the mono-ansa compound N3P3Cl4[OCH2(CF2)4CH2O] (3); the single-bridged compound N3P3Cl5[OCH2(CF2)4CH2O]N3P3Cl5 (4), two double-bridged compounds N3P3Cl4(OCH2(CF2)4CH2O)2N3P3Cl4, (5-anti, 5-syn) and the triple-bridged compound N3P3Cl3(OCH2(CF2)4CH2O)3N3P3Cl3 (6). X-ray crystallographic studies confirmed the structures of the ansa compound (3), the double-bridged compound (5-anti) and the first example of a triple-bridged cyclotriphosphazene derivative (6). The results were also compared with those for reactions of (1) with analogous fluorinated shorter diols (1,4-butane- and 1,5-pentane-diols). It is found that on increasing the chain length of the diol, there is a decrease in the relative proportion of intramolecular reactions giving spiro and ansa derivatives and an increase in the amount of bridged cyclophosphazene derivatives via intermolecular reactions.  相似文献   

13.
Abstract

Mono-(N3P3Cl4Y2), bis-(N3P3Cl2Y4) and tris-spiro derivatives (N3P3Y6) have been prepared with ethylene, 1, 3-propylene and 1,4-butylene glycols (Y2 = glycol residue). The 1H NMR spectra of mono- and tris-derivatives are relatively simple; those of the bis- very complex due to the intrinsic asymmetry of the methylene protons. This effect is made use of in studying the replacement pattern of N3P3Cl4 [O (CH2)3O] with primary and secondary amines. Homonuclear 1H decoupling simplifies the spectra and allows an unambiguous distinction to be made between the different isomeric possibilities of the bis amino derivatives N3P3Cl2R2 [O(CH2)3O] where R = amino residue. Primary amines give geminal, secondary amines nongeminal trans-derivatives. The trans-structure of the bis-pyrrolidino derivative has been confirmed by X-ray crystallography.  相似文献   

14.
The reactions of cyclotriphosphazene, N3P3Cl6 (1), in a 1:1.2 stoichiometry with the sodium derivative of seven diols [ethane- (2a), 1,3-propane- (2b), 1,4-butane- (2c), 1,5-pentane- (2d), 1,6-hexane- (2e), 1,8-octane- (2f) and 1,10-decane- (2g) diol] in THF solution at room temperature have been used to investigate the effect of chain length on the formation of reaction products. Although no new products were found for the reaction of 1 with diols 2a-c compared to those in the literature using other bases and solution conditions, the reactions of 1 with the diols 2d-g gave six different types of products, whose structures have been characterized by elemental analysis, mass spectrometry, 1H and 31P NMR spectroscopy; ansa compounds N3P3Cl4[O(CH2)nO], (5d-5g); single-bridged compounds N3P3Cl5[O(CH2)nO]N3P3Cl5(6d-6f); double-bridged compounds N3P3Cl4[O(CH2)nO]2N3P3Cl4 (7d-7g, syn and anti) and triple-bridged compounds, N3P3Cl3[O(CH2)nO]3N3P3Cl3 (8d-f). Where suitable single crystals were obtained, X-ray crystallographic studies confirmed the structures of two ansa compounds (5d and 5f), one single-bridged compound (6e), and five double-bridged compounds (meso-anti for 7d, 7e, 7f and meso-syn for 7d and 7f). 31P NMR measurements of the reaction mixtures were used to quantify the formation of products for the reactions 1 with all the diols, 2a-g; it is found that, with increasing chain length of the diol, there is a decrease in the products formed by intramolecular reactions (spiro and ansa derivatives) and a concomitant increase in the amounts of products formed by intermolecular reactions (single-, double- and triple-bridged derivatives) of cyclophosphazene.  相似文献   

15.
In this paper, we have illustrated the utilisation of a second-sphere coordination approach to construct supramolecular inclusion solids with varieties of guest molecules. A flexible molecule N,N,N′,N′-tetra-p-methylbenzyl-ethylenediamine (L1) bearing doubly protonated H-bond donors was designed, capable of forming N–H…Cl hydrogen bonds with a crystallographically unique chloride anion, to construct an anion-directed ligand. The pillared double-layered host framework was constructed by an anion-directed ligand and primary coordination sphere [CoCl4]2 ?  through weak C–H…Cl hydrogen-bonding interactions. A variety of guest molecules, such as p-anisaldehyde, 1,4-dimethoxy-2,5-bis(methoxymethyl)benzene, can be included, leading to the formation of novel supramolecular inclusion solids: [L1]·4[H]+·[CoCl4]2 ? ·2Cl·1.5[C8H8O2]·0.25[CH3OH] (1) and [L1]·4[H]+·[CoCl4]2 ? ·2Cl·1.5[C12H20O4]·0.5[CH3OH] (2).

We have presented herein the utilisation of a second-sphere coordination approach to construct supramolecular inclusion solids with a variety of guest molecules. A novel type of a pillared double-layered host framework was constructed by a second-sphere coordination between the anion-directed ligand (L1 = N,N,N′,N′-tetra-p-methylbenzyl-ethylenediamine) and [CoCl4]2 ?  through weak C–H…Cl hydrogen-bonding interaction, and a variety of guest molecules, such as p-anisaldehyde, 1,4-dimethoxy-2,5-bis(methoxymethyl)benzene, can be included, leading to the formation of supramolecular inclusion solids: [L1]·4[H]+·[CoCl4]2 ? ·2Cl·1.5[C8H8O2]·0.25[CH3OH] (1) and [L1]·4[H]+·[CoCl4]2 ? ·2Cl·1.5[C12H20O4]·0.5[CH3OH] (2)

  相似文献   

16.
17.
The Chlorooxoarsenates(III) (PPh4)2[As4O2Cl10] · 2 CH3CN and (PPh4)2[As2OCl6] · 3 CH3CN (PPh4)2[As2Cl8] can be prepared from As2O3, SOCl2 and PPh4Cl in acetonitrile. Its oxidation with chlorine yields PPh4[AsCl6]. This was also obtained directly from arsenic, chlorine and PPh4Cl, (PPh4)2[As4O2Cl10] · 2 CH3CN being a side product; the latter was obtained with high yield from AsCl3, As2O3 and PPh4Cl in acetonitrile. By addition of PPh4Cl it was converted to (PPh4)2[As2OCl6] · 3 CH3CN. According to their X-ray crystal structure analyses, both crystallize in the triclinic space group P 1. The [As4O2Cl10]2– ion can be regarded as a centrosymmetric association product of two Cl2AsOAsCl2 molecules and two Cl ions, each Cl ion being coordinated with all four As atoms. In the [As2OCl6]2– ion the As atoms are linked via the O atom and two Cl atoms.  相似文献   

18.
Molybdenum(II) Halide Clusters with six Alcoholate Ligands: (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6CH3OH and (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] . The reaction of Na2[Mo6Cl8(OCH3)6] and 2,2,2-crypt yields (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6 CH3OH ( 1 ), which is converted to (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] ( 2 ) by metathesis with phenol. According to single crystal structure determinations ( 1 : P3 1c, a=14.613(3) Å, c=21.036(8) Å; 2 : P3 1c, a=15.624(1) Å, c=19.671(2) Å) the compounds contain anionic clusters [Mo6Cl8i(ORa)6]2? ( 1 : d(Mo—Mo) 2.608(1) Å to 2.611(1) Å, d(Mo—Cl) 2.489(1) Å to 2.503(1) Å, d(Mo—O) 2.046(4) Å; 2 : d(Mo—Mo) 2.602(3) Å to 2.608(3) Å, d(Mo—Cl) 2.471(5) Å to 2.4992(5) Å, d(Mo—O) 2.091(14) Å). Electronic interactions of the halide cluster and the phenolate ligands in [Mo6Cl8(OC6H5)6]2? is investigated by means of UV/VIS spectroscopy and EHMO calculations.  相似文献   

19.
The reaction between Cl2Te(NSO)2, Cl6Te2N2S and Cl2Te(N=S=N)2TeCl2 with MCl3 provided the compounds [(Cl2Te)2N+][MCl4] (M = Ga, Al, Fe). Treating Cl6Te2N2S with M′Cl3 yielded besides [(Cl2Te)2N+][M′Cl4] (M′ = Al, Fe) the sulfur containing compound [ClTeNSNS+][M′Cl4]. The structure for [ClTeNSNS+][FeCl4] was established by an X‐ray structure analysis. With Te(NSO)2 and CF3SCl, via Cl2Te(NSO)2, the known compound Te2NCl5 was formed. Tetrafluoroditelluradiazetidine was obtained from TeF4 and [(CH3)3Si]2NH which on treating with (CH3)3SiCl provided the corresponding chloroderivative. In addition metathetical reaction between Cl2TeNSNS and CF3C(O)OAg yielded [CF3C(O)O]2TeSNSN. Similarly (CH3)2Te(NSO)2–xClx (x = 0,1) and (CH3)2Te(NCO)2 were made from (CH3)2TeCl2 and AgNSO or AgNCO, respectively. Halogination of Cl2Te(N=S=N)2TeCl2 with Cl2 or Br2 yielded Cl6Te2N2S and Cl4Br2Te2N2S. The bromoderivate was also prepared from Cl2Te(NSO)2 and Br2. AgNSO was synthesized by treating CF3C(O)OAg with (CH3)3SiNSO. Two other synthons (CF3Se)2Te and (CF3S)2Se were obtained from CF3SeCl and Na2Te and from Hg(SCF3)2 plus SeCl4, respectively.  相似文献   

20.
Preparation of Tetramethylammonium Azidosulfite and Tetramethylammonium Cyanate Sulfur Dioxide‐Adduct, [(CH3)4N]+[SO2N3], [(CH3)4N]+[SO2OCN] and Crystal Structure of [(CH3)4N]+[SO2N3] Tetramethylammonium azide forms with sulfur dioxide an azidosulfite salt. It is characterized by NMR and vibrational spectroscopy and the crystal structure analysis. [(CH3)4N]+[SO2N3] crystallizes in the monoclinic space group P21/c with a = 551.3(1) pm, b = 1095.2(1) pm, c = 1465.0(1) pm, β = 100.63(1)°, and four formula units in the unit cell. The crystal structure possesses a strong S–N interaction between the N3– anions and the SO2 molecules. The S–N distance of 200.5(2) pm is longer than a covalent single S–N bond. The structure is compared with ab initio calculated data. Furthermore an adduct of tetrametylammonium cyanate and sulfur dioxide is reported. It is characterised by NMR and vibrational spectroscopy. The structure is calculated by ab initio methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号