首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
It is well known that a graph G of order p ≥ 3 is Hamilton-connected if d(u) + d(v) ≥ p + 1 for each pair of nonadjacent vertices u and v. In this paper we consider connected graphs G of order at least 3 for which d(u) + d(v) ≥ |N(u) ∪ N(v) ∪ N(w)| + 1 for any path uwv with uvE(G), where N(x) denote the neighborhood of a vertex x. We prove that a graph G satisfying this condition has the following properties: (a) For each pair of nonadjacent vertices x, y of G and for each integer k, d(x, y) ≤ k ≤ |V(G)| − 1, there is an xy path of length k. (b) For each edge xy of G and for each integer k (excepting maybe one k η {3,4}) there is a cycle of length k containing xy. Consequently G is panconnected (and also edge pancyclic) if and only if each edge of G belongs to a triangle and a quadrangle. Our results imply some results of Williamson, Faudree, and Schelp. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
The competition graph of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of a graph G is the smallest number of such isolated vertices. Computing the competition number of a graph is an NP-hard problem in general and has been one of the important research problems in the study of competition graphs. Opsut [1982] showed that the competition number of a graph G is related to the edge clique cover number θ E (G) of the graph G via θ E (G) ? |V(G)| + 2 ≤ k(G) ≤ θ E (G). We first show that for any positive integer m satisfying 2 ≤ m ≤ |V(G)|, there exists a graph G with k(G) = θ E (G) ? |V(G)| + m and characterize a graph G satisfying k(G) = θ E (G). We then focus on what we call competitively tight graphs G which satisfy the lower bound, i.e., k(G) = θ E (G) ? |V(G)| + 2. We completely characterize the competitively tight graphs having at most two triangles. In addition, we provide a new upper bound for the competition number of a graph from which we derive a sufficient condition and a necessary condition for a graph to be competitively tight.  相似文献   

3.
An edge-magic total labeling on G is a one-to-one map λ from V(G)∪E(G) onto the integers 1,2,…,|V(G)∪E(G)| with the property that, given any edge (x,y), λ(x)+λ(x,y)+λ(y)=k for some constant k. The labeling is strong if all the smallest labels are assigned to the vertices. Enomoto et al. proved that a graph admitting a strong labeling can have at most 2|V(G)|-3 edges. In this paper we study graphs of this maximum size.  相似文献   

4.
In 1990 G. T. Chen proved that if G is a 2-connected graph of order n and 2|N(x) ∪ N(y)| + d(x) + d(y) ≥ 2n − 1 for each pair of nonadjacent vertices x, yV (G), then G is Hamiltonian. In this paper we prove that if G is a 2-connected graph of order n and 2|N(x) ∪ N(y)| + d(x)+d(y) ≥ 2n−1 for each pair of nonadjacent vertices x, yV (G) such that d(x, y) = 2, then G is Hamiltonian.  相似文献   

5.
One of the most fundamental results concerning paths in graphs is due to Ore: In a graph G, if deg x + deg y ≧ |V(G)| + 1 for all pairs of nonadjacent vertices x, y ? V(G), then G is hamiltonian-connected. We generalize this result using set degrees. That is, for S ? V(G), let deg S = |x?S N(x)|, where N(x) = {v|xv ? E(G)} is the neighborhood of x. In particular we show: In a 3-connected graph G, if deg S1 + deg S2 ≧ |V(G)| + 1 for each pair of distinct 2-sets of vertices S1, S2 ? V(G), then G is hamiltonian-connected. Several corollaries and related results are also discussed.  相似文献   

6.
We examine several extremal problems for graphs satisfying the property |N(x) ∪ N(y)| ? s for every pair of nonadjacent vertices x, y ? V(G). In particular, values for s are found that ensure that the graph contains an s-matching, a 1-factor, a path of a specific length, or a cycle of a specific length.  相似文献   

7.
We show that if G is a 3-connected graph of minimum degree at least 4 and with |V (G)| ≥ 7 then one of the following is true: (1) G has an edge e such that G/e is a 3-connected graph of minimum degree at least 4; (2) G has two edges uv and xy with ux, vy, vxE(G) such that the graph G/uv/xy obtained by contraction of edges uv and xy in G is a 3-connected graph of minimum degree at least 4; (3) G has a vertex x with N(x) = {x1, x2, x3, x4} and x1x2, x3x4E(G) such that the graph (G ? x)/x1x2/x3x4 obtained by contraction of edges x1x2 and x3x4 in Gx is a 3-connected graph of minimum degree at least 4.

Each of the three reductions is necessary: there exists an infinite family of 3- connected graphs of minimum degree not less than 4 such that only one of the three reductions may be performed for the members of the family and not the two other reductions.  相似文献   

8.
Let G = (V, E) be a digraph of order n, satisfying Woodall's condition ? x, yV, if (x, y) ? E, then d+(x) + d?(y) ≥ n. Let S be a subset of V of cardinality s. Then there exists a circuit including S and of length at most Min(n, 2s). In the case of oriented graphs we obtain the same result under the weaker condition d+(x) + d?(y) ≥ n – 2 (which implies hamiltonism).  相似文献   

9.
Let G be a 2-edge-connected simple graph, and let A denote an abelian group with the identity element 0. If a graph G * is obtained by repeatedly contracting nontrivial A-connected subgraphs of G until no such a subgraph left, we say G can be A-reduced to G*. A graph G is bridged if every cycle of length at least 4 has two vertices x, y such that d G (x, y) < d C (x, y). In this paper, we investigate the group connectivity number Λ g (G) = min{n: G is A-connected for every abelian group with |A| ≥ n} for bridged graphs. Our results extend the early theorems for chordal graphs by Lai (Graphs Comb 16:165–176, 2000) and Chen et al. (Ars Comb 88:217–227, 2008).  相似文献   

10.
For a graph G, ??(G) denotes the minimum degree of G. In 1971, Bondy proved that, if G is a 2-connected graph of order n and d(x)?+?d(y)????n for each pair of non-adjacent vertices x,y in G, then G is pancyclic or G?=?K n/2,n/2. In 2001, Xu proved that, if G is a 2-connected graph of order n????6 and |N(x)????N(y)|?+???(G)????n for each pair of non-adjacent vertices x,y in G, then G is pancyclic or G?=?K n/2,n/2. In this paper, we introduce a new sufficient condition of generalizing degree sum and neighborhood union and prove that, if G is a 2-connected graph of order n????6 and |N(x)????N(y)|?+?d(w)????n for any three vertices x,y,w of d(x,y)?=?2 and wx or $wy\not\in E(G)$ in G, then G is 4-vertex pancyclic or G belongs to two classes of well-structured exceptional graphs. This result also generalizes the above results.  相似文献   

11.
For several years, the study of neighborhood unions of graphs has given rise to important structural consequences of graphs. In particular, neighborhood conditions that give rise to hamiltonian cycles have been considered in depth. In this paper we generalize these approaches to give a bound on the smallest number of cycles in G containing all the vertices of G. We show that if for all x, y ? V(G), |N(x) ∩ N(y)| ≧ 2n/5 + 1, then V(G) is coverable by at most two cycles. Several related results and extensions to t cycles are also given.  相似文献   

12.
The edge degree d(e) of the edge e=uv is defined as the number of neighbours of e, i.e., |N(u)∪N(v)|-2. Two edges are called remote if they are disjoint and there is no edge joining them. In this article, we prove that in a 2-connected graph G, if d(e1)+d(e2)>|V(G)|-4 for any remote edges e1,e2, then all longest cycles C in G are dominating, i.e., G-V(C) is edgeless. This lower bound is best possible.As a corollary, it holds that if G is a 2-connected triangle-free graph with σ2(G)>|V(G)|/2, then all longest cycles are dominating.  相似文献   

13.
For a pair of vertices x and y in a graph G, we denote by dG(x,y) the distance between x and y in G. We call x a boundary vertex of y if x and y belong to the same component and dG(y,v)?dG(y,x) for each neighbor v of x in G. A boundary vertex of some vertex is simply called a boundary vertex, and the set of boundary vertices in G is called the boundary of G, and is denoted by B(G).In this paper, we investigate graphs with a small boundary. Since a pair of farthest vertices are boundary vertices, |B(G)|?2 for every connected graph G of order at least two. We characterize the graphs with boundary of order at most three. We cannot give a characterization of graphs with exactly four boundary vertices, but we prove that such graphs have minimum degree at most six. Finally, we give an upper bound to the minimum degree of a connected graph G in terms of |B(G)|.  相似文献   

14.
 Suppose G is a graph and T is a set of non-negative integers that contains 0. A T-coloring of G is an assignment of a non-negative integer f(x) to each vertex x of G such that |f(x)−f(y)|∉T whenever xyE(G). The edge span of a T-coloring−f is the maximum value of |f(x) f(y)| over all edges xy, and the T-edge span of a graph G is the minimum value of the edge span of a T-coloring of G. This paper studies the T-edge span of the dth power C d n of the n-cycle C n for T={0, 1, 2, …, k−1}. In particular, we find the exact value of the T-edge span of C n d for n≡0 or (mod d+1), and lower and upper bounds for other cases. Received: May 13, 1996 Revised: December 8, 1997  相似文献   

15.
On island sequences of labelings with a condition at distance two   总被引:1,自引:0,他引:1  
An L(2,1)-labeling of a graph G is a function f from the vertex set of G to the set of nonnegative integers such that |f(x)−f(y)|≥2 if d(x,y)=1, and |f(x)−f(y)|≥1 if d(x,y)=2, where d(x,y) denotes the distance between the pair of vertices x,y. The lambda number of G, denoted λ(G), is the minimum range of labels used over all L(2,1)-labelings of G. An L(2,1)-labeling of G which achieves the range λ(G) is referred to as a λ-labeling. A hole of an L(2,1)-labeling is an unused integer within the range of integers used. The hole index of G, denoted ρ(G), is the minimum number of holes taken over all its λ-labelings. An island of a given λ-labeling of G with ρ(G) holes is a maximal set of consecutive integers used by the labeling. Georges and Mauro [J.P. Georges, D.W. Mauro, On the structure of graphs with non-surjective L(2,1)-labelings, SIAM J. Discrete Math. 19 (2005) 208-223] inquired about the existence of a connected graph G with ρ(G)≥1 possessing two λ-labelings with different ordered sequences of island cardinalities. This paper provides an infinite family of such graphs together with their lambda numbers and hole indices. Key to our discussion is the determination of the path covering number of certain 2-sparse graphs, that is, graphs containing no pair of adjacent vertices of degree greater than 2.  相似文献   

16.
A total dominating set, S, in a graph, G, has the property that every vertex in G is adjacent to a vertex in S. The total dominating number, γt(G) of a graph G is the size of a minimum total dominating set in G. Let G be a graph with no component of size one or two and with Δ(G) ≥ 3. In 6 , it was shown that |E(G)| ≤ Δ(G) (|V(G)|–γt(G)) and conjectured that |E(G)| ≤ (Δ(G)+3) (|V(G)|–γt(G))/2 holds. In this article, we prove that holds and that the above conjecture is false as there for every Δ exist Δ‐regular bipartite graphs G with |E(G)| ≥ (Δ+0.1 ln(Δ)) (|V(G)|–γt(G))/2. The last result also disproves a conjecture on domination numbers from 8 . © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 325–337, 2007  相似文献   

17.
Given an embedding f: GZ2 of a graph G in the two-dimensional lattice, let |f| be the maximum L1 distance between points f(x) and f(y) where xy is an edge of G. Let B2(G) be the minimum |f| over all embeddings f. It is shown that the determination of B2(G) for arbitrary G is NP-complete. Essentially the same proof can be used in showing the NP-completeness of minimizing |f| over all embeddings f: GZn of G into the n-dimensional integer lattice for any fixed n ≥ 2.  相似文献   

18.
The theory of vertex-disjoint cycles and 2-factors of graphs is the extension and generation of the well-known Hamiltonian cycles theory and it has important applications in network communication. In this paper we first prove the following result. Let G=(V 1,V 2;E) be a bipartite graph with |V 1|=|V 2|=n such that n≥2k+1, where k≥1 is an integer. If d(x)+d(y)≥?(4n+2k?1)/3? for each pair of nonadjacent vertices x and y of G with xV 1 and yV 2, then, for any k independent edges e 1,…,e k of G, G contains k vertex-disjoint quadrilaterals C 1,…,C k such that e i E(C i ) for each i∈{1,…,k}. We further show that the degree condition above is sharp. If |V 1|=|V 2|=2k, we give degree conditions that G has a 2-factor with k vertex-disjoint quadrilaterals C 1,…,C k containing specified edges of G.  相似文献   

19.
An (a, d)-edge-antimagic total labeling of a graph G is a bijection f from V(G) ∪ E(G) onto {1, 2,…,|V(G)| + |E(G)|} with the property that the edge-weight set {f(x) + f(xy) + f(y) | xyE(G)} is equal to {a, a + d, a + 2d,...,a + (|E(G)| ? 1)d} for two integers a > 0 and d ? 0. An (a, d)-edge-antimagic total labeling is called super if the smallest possible labels appear on the vertices. In this paper, we completely settle the problem of the super (a, d)-edge-antimagic total labeling of the complete bipartite graph Km,n and obtain the following results: the graph Km,n has a super (a, d)-edge-antimagic total labeling if and only if either (i) m = 1, n = 1, and d ? 0, or (ii) m = 1, n ? 2 (or n = 1 and m ? 2), and d ∈ {0, 1, 2}, or (iii) m = 1, n = 2 (or n = 1 and m = 2), and d = 3, or (iv) m, n ? 2, and d = 1.  相似文献   

20.
Let G=(V,E) be a 2-connected simple graph and let dG(u,v) denote the distance between two vertices u,v in G. In this paper, it is proved: if the inequality dG(u)+dG(v)?|V(G)|-1 holds for each pair of vertices u and v with dG(u,v)=2, then G is Hamiltonian, unless G belongs to an exceptional class of graphs. The latter class is described in this paper. Our result implies the theorem of Ore [Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55]. However, it is not included in the theorem of Fan [New sufficient conditions for cycles in graph, J. Combin. Theory Ser. B 37 (1984) 221-227].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号