首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
The adsorption isotherms for carbon particles of about 200 nm size, in the presence of various combinations of a terminally functionalised (amine) polyisobutylene polymer and alkylpropoxylate/alkylbutoxylate surfactant molecules, on 7 μm diameter stainless steel beads from isooctane solutions have been obtained. The deposition of carbon particles on stainless steel plates was achieved using a flow-cell and analysed using scanning electron microscopy. The flow-cell was also used to study the “cleaning” properties of various polymer/surfactant solutions, in their ability to remove deposited particles. It was found that the polymer molecules were much more effective dispersants and stabilisers for the carbon particles, but the surfactant molecules were much better at effecting anti-deposition and subsequent removal of deposited carbon particles, and provide carried adsorbed polymer chains.  相似文献   

2.
The dilational properties of partly hydrolyzed polyacrylamide (HPAM) and 4,5-diheptyl-2-propylbenzene sulfonate (377) mixed systems in the absence or presence of electrolyte or oleic acid at the oil-water interface have been described by means of the oscillating barriers method and the interfacial tension relaxation method. The polymer plays different roles in influencing the nature of polymer-surfactant adsorbed layers at different surfactant concentrations. At low surfactant concentration, the addition of polymer perhaps weakens the “entanglement” of long alkyl chains, which decreases strikingly the dilational modulus of the adsorbed layer. At high surfactant concentration, the addition of the polymer increases the dilational modulus due to the hydrophobic interactions between polymer and surfactant molecules. On the case of adding electrolyte, the frequency dependence of dilational modulus increases due to the enhancement of exchange process of surfactant molecules and bivalent cation has more obvious effect than Na ion. Oleic acid plays dual roles in controlling interfacial dilational properties of mixed adsorption films: a small quantity of oleic acid increases the dilational modulus by forming densely packed mixed adsorption layer with surfactant molecules, while the superfluous addition of oleic acid could decrease the dilational modulus mainly due to the weakening of the “entanglement” among long alkyl chains in surfactant molecules.  相似文献   

3.
The adsorption isotherms for an (amino) terminally functionalised, oligomeric polyisobutylene and for a series of alkylpropoxylate or alkylbutoxylate surfactant molecules on carbon particles, in isooctane, have been obtained. The isotherms on carbon show that the oligomer is the most strongly adsorbing species. The surfactants show some evidence of forming aggregates on the carbon surface at higher concentrations. Analysis of the adsorption isotherms indicate that the size of these aggregates is similar on the carbon particles and on steel balls, reported previously, but that in some cases the actual adsorbed amounts on the two surfaces differ considerably. Ellipsometric studies carried out in situ on steel surfaces in isooctane show that only the polymer gives a relatively thick adsorbed layer. Addition of surfactant reduces the adsorption of the oligomer. There are some differences between the thickness values reported previously using AFM, compared to those found in the current work using ellipsometry, but in both cases it would seem that some degree of multilayer adsorption is occurring for the oligomer on steel in isooctane.  相似文献   

4.
5.
Cationic surfactants with different hydrophobic chain length were adsorbed onto cellulose fibers in an aqueous medium. The adsorption isotherms exhibited three characteristic regions which were interpreted in terms of the mode of aggregation of the surfactant molecules at the solid–liquid interface. The hydrophobic layers were used as a reservoir to trap various slightly water soluble organic molecules. A quantitative study of these phenomena suggested typical partition behavior of the organic solutes between the aqueous phase and the surfactant layer. The surfactant chain length (from C12 to C18) was shown to play an important role in terms of the capacity to retain the organic solute and the capacity increased with the number of carbon atoms.  相似文献   

6.
The interfacial behavior of aqueous solutions of four different neutral polymers in the presence of sodium dodecyl sulfate (SDS) has been investigated by surface tension measurements and ellipsometry. The polymers comprised linear poly(ethylene oxide) with low and high molecular masses (10(3) and 10(6) Dalton (Da), respectively), and two high molecular mass methacrylate-based comb polymers containing poly(ethylene oxide) side chains. The adsorption isotherms of SDS, determined by Gibbs analysis of surface tension data, are nearly the same in the presence of the high molecular mass linear polymer and the comb polymers. Analysis of the ellipsometric data reveals that while a single surface layer model is appropriate for films of polymer alone, a more sophisticated interfacial layer model is necessary for films of SDS alone. For the polymer/surfactant mixtures, a novel semiempirical approach is proposed to determine the surface excess of polymer, and hence quantify the interfacial composition, through analysis of data from the two techniques. The replacement of the polymer due to surfactant adsorption is much less pronounced for the high molecular mass linear polymer and for the comb polymers than for the low molecular mass linear polymer. This finding is rationalized by the significantly higher adsorption driving force of the larger polymer molecules as well as by their more amphiphilic structure in the case of the comb polymers.  相似文献   

7.
The self-assembly of nonionic surfactants in bulk solution and on hydrophobic surfaces is driven by the same intermolecular interactions, yet their relationship is not clear. While there are abundant experimental and theoretical studies for self-assembly in bulk solution and at the air-water interface, there are only few systematic studies for hydrophobic solid-water interfaces. In this work, we have used optical reflectometry to measure adsorption isotherms of seven different nonionic alkyl polyethoxylate surfactants (CH3(CH2)I-1(OCH2CH2)JOH, referred to as CIEJ surfactants, with I = 10-14 and J = 3-8), on hydrophobic, chemically homogeneous self-assembled monolayers of octadecyltrichlorosilane. Systematic changes in the adsorption isotherms are observed for variations in the surfactant molecular structure. The maximum surface excess concentration decreases (and minimum area/molecule increases) with the square root of the number of ethoxylate units in the surfactant (J). The adsorption isotherms of all surfactants collapse onto the same curve when the bulk and surface excess concentrations are rescaled by the bulk critical aggregation concentration (CAC) and the maximum surface excess concentration. In an accompanying paper we compare these experimental results with the predictions of a unified model developed for self-assembly of nonionic surfactants in bulk solution and on interfaces.  相似文献   

8.
We present Monte Carlo simulations of nonionic surfactant adsorption at the liquid/vapor interface of a monatomic solvent. All molecules in the system, solvent and surfactant, are characterized by the Lennard-Jones (LJ) potential using differing interaction parameters. Surfactant molecules consist of an amphiphilic chain with a solvophilic head and a solvophobic tail. Adjacent atoms along the surfactant chain are connected by finitely extensible harmonic springs. Solvent molecules move via the Metropolis random-walk algorithm, whereas surfactant molecules move according to the continuum configurational bias Monte Carlo (CBMC) method. We generate quantitative thermodynamic adsorption and surface tension isotherms in addition to surfactant radius of gyration, tilt angles, and potentials of mean force. Surface tension simulations compared to those calculated from the simulated adsorbed amounts and the Gibbs adsorption isotherm agree confirming equilibrium in our simulations. We find that the classical Langmuir isotherm is obeyed for our LJ surfactants over the range of head and tail lengths studied. Although simulated surfactant chains in the bulk solution exhibit random orientations, surfactant chains at the interface orient roughly perpendicular and the tails elongate compared to bulk chains even in the submonolayer adsorption regime. At a critical surfactant concentration, designated as the critical aggregation concentration (CAC), we find aggregates in the solution away from the interface. At higher concentrations, simulated surface tensions remain practically constant. Using the simulated potential of mean force in the submonolayer regime and an estimate of the surfactant footprint at the CAC, we predict a priori the Langmuir adsorption constant, KL, and the maximum monolayer adsorption, Gammam. Adsorption is driven not by proclivity of the surfactant for the interface, but by the dislike of the surfactant tails for the solvent, that is by a "solvophobic" effect. Accordingly, we establish that a coarse-grained LJ surfactant system mimics well the expected equilibrium behavior of aqueous nonionic surfactants adsorbing at the air/water interface.  相似文献   

9.
A thermodynamic analysis of the interaction between fourteen different molar mass poly(ethylene oxide)s (PEO) and sodium dodecyl sulfate (SDS) based on the measured surfactant-binding isotherms is given. The surfactant-binding isotherms were determined by the potentiometric method in the presence of 0.1 M inert electrolyte (NaBr). It was found that there is no PEO/SDS complex formation if M(PEO) < 1000. In the molecular weight range 1000 < M(PEO) < 8000, the critical aggregation concentration (cac) and the surfactant aggregation number are decreasing as the polymer molecular weight increases. The saturated bound surfactant amount is proportional to the number concentration of the polymer in this molecular weight range. If M(PEO) exceeds approximately 8000, the cac does not depend on the polymer molar mass, and the saturated bound amount of the surfactant becomes proportional to the mass concentration of the polymer. It was also observed that independently of the polymer molecular weight the surfactant aggregation number increases as the equilibrium surfactant monomer concentration increases from the cac to the critical micellar concentration (cmc). Finally, it was demonstrated that only one polymer molecule is involved in the complex formation independently of the polymer molecular weight.  相似文献   

10.
In this work, the adsorption of cationic surfactant and organic solutes on oxidized cellulose fibers bearing different amounts of carboxylic moieties was investigated. The increase in the amount of -COOH groups on cellulose fibers by TEMPO oxidation induced a general rise in surfactant adsorption. For all tested conditions, that is, cellulose oxidation level and surfactant alkyl chain length (C12 and C16), adsorption isotherms displayed a typical three-region shape with inversion of the substrate zeta-potential which was interpreted as reflecting surfactant adsorption and aggregation (admicelles and hemimicelles) on cellulose fibers. The addition of organic solutes in surfactant/cellulose systems induced a decrease in surfactant cac on the cellulose surface thus favoring surfactant aggregation and the formation of mixed surfactant/solute assemblies. Adsorption isotherms of organic solutes on cellulose in surfactant/cellulose/solute systems showed that solute adsorption is strictly correlated to (i) the surfactant concentration, solute adsorption increases up to the surfactant cmc, where solute partitioning between the cellulose surface and free micelles causes a drop in adsorption, and to (ii) solute solubility and functional groups. The specific shape of solutes adsorption isotherms at a fixed surfactant concentration was interpreted using a Frumkin adsorption isotherm, thus suggesting that solute uptake on cellulose fibers is a coadsorption and not a partitioning process. Results presented in this study were compared with those obtained in a previous work investigating solute adsorption in anionic surfactant/cationized cellulose systems to better understand the role of surfactant/solute interactions in the coadsorption process.  相似文献   

11.
We have developed a pseudo-phase model to predict the self-assembly of nonionic surfactants on hydrophobic solid or fluid interfaces and in bulk solution. The uniqueness of this model is that it provides the relationship between molecular structure and self-assembly in solution and on interfaces. This model requires the input of minimal new experimental data. The remaining model parameters may be calculated on the basis of the surfactant molecular structure. The validity of the model has been established by comparing predictions with a wide array of experimental data for nonionic surfactant adsorption at the hydrophobic solid-water interface and at the air-water interface. The same model is then used to predict the self-assembly in bulk solution. The model predictions for critical aggregation concentration, aggregate shapes, and adsorption isotherms of various surfactants are in good agreement with the experimental data available in the literature.  相似文献   

12.
采用小幅低频振荡和界面张力弛豫技术, 考察了疏水缔合水溶性聚丙烯酰胺(HMPAM)在正癸烷-水界面上的扩张黏弹性质, 研究了不对称Gemini表面活性剂C12COONa-p-C9SO3Na对其界面扩张性质的影响. 研究发现, 疏水链段的存在, 使HMPAM在界面层中具有较快的弛豫过程, 扩张弹性显示出明显的频率依赖性. 表面活性剂分子可以通过疏水相互作用与聚合物的疏水嵌段在界面上形成类似于混合胶束的特殊聚集体. 表面活性剂分子与界面聚集体之间存在快速交换过程, 可以大大降低聚合物的扩张弹性. 同时, 聚合物分子链能够削弱表面活性剂分子长烷基链之间的强相互作用, 导致混合吸附膜的扩张弹性远低于单独表面活性剂吸附膜.  相似文献   

13.
A comparative study of spread and adsorbed monolayer of poly(ethylene oxide)s of different molecular weight hydrophobically modified with alkyl isocyanates of different length chain is reported. The modification of the polymer was carried out according to reported procedures. The polymers obtained were studied at the air-water interface by Langmuir isotherms for spread monolayers and by Gibbs isotherms for the adsorption process. Isotherms obtained are interpreted in terms of the hydrophobic and hydrophilic balance of the polymers. Limiting area per repeating unit (A(0)) and collapse pressure (pi(c)) from spread monolayers were obtained. Spread monolayers of the hydrophobically modified polymers show larger collapse pressure values than unmodified polymer monolayers. In the adsorption process the excess surface concentration Gamma(infinity), area per repeat unit sigma, and efficiency of the adsorption were determined. The values of the area occupied per repeat unit in adsorbed monolayer (sigma) were larger than those of the spread monolayer. The efficiency of the adsorption of poly(ethylene oxide)s increases with the hydrophobic modification and with the alkyl chain length.  相似文献   

14.
The dilational viscoelastic properties of hydrophobically modified partly hydrolyzed polyacrylamide and anionic surfactants (4,5-diheptyl-2-propylbenzene sulfonate and gemini surfactant C12COONa-p-C9SO3Na) in the absence or presence of electrolyte have been investigated at the decane–water interface by means of longitudinal method and the interfacial tension relaxation method. Experimental results show that at low surfactant concentration, the increase of the dilational modulus by the addition of surfactant molecules at low frequency might be explained by the mix-adsorption of the polymer chains and surfactant molecules. At the same time, polymer chain could sharply decrease the dilational modulus of surfactant film mainly due to the weakening of the strong interactions among long alkyl chains in surfactant molecules. At high surfactant concentration, the addition of surfactant molecules can decrease the dilational modulus of polymer solution due to the fast process involving in the exchange of surfactant molecules between the interface and the mixed complex formed by surfactant molecules and hydrophobic micro-domains. The added electrolyte, which results in screening of electrostatic interactions between the ionized groups, generally increases the frequency dependence of the interfacial dilational modulus. The data obtained on the relaxation processes via interfacial tension relaxation measurements can explain the results from oscillating barriers measurements very well.  相似文献   

15.
In this paper the surface activity of protein mucin at solution/air interface has been studied. The experiments of the adsorbed protein at solution/air interface have been carried out with a range of protein concentrations at a defined pH. The adsorption of the protein to solid surfaces and the degree of hydrophobicity at solid/solution interface of mucin have been evaluated at different pH and in the presence of Hofmeister electrolyte. The results from these studies have been further substantiated by surface potential measurements of mucin covered surface on stainless steel. Quartz crystal microbalance (QCM) has been used to follow the protein adsorption kinetics from solution to solid surface. The results from these measurements show that the adsorption behavior has a remarkable dependence on the degree of maximum coverage and is almost independent of the ionic strength. Other characteristic features such as maximum adsorption values at the protein isoelectric point (IEP4.7) and low-affinity isotherms that showed surface saturation even under unfavorable electrostatic conditions have been observed. The amount of mucin adsorbed in the presence of electrolytes has been estimated using electron spectroscopy for chemical analysis (ESCA). The study clearly shows that there exists an inverse relationship between the hydrophobicity and surface tension of the protein and also on the hydrated radius of Hofmeister electrolyte used.  相似文献   

16.
We investigate the competitive adsorption of polymer and surfactant at oil-water interface by measuring the hydrodynamic diameter, zeta potential, microstructure and rheology. The polymer used in our experiment is a statistical copolymer of polyvinyl alcohol and vinyl acetate copolymer (PVA-Vac) and the emulsion is oil-in-water system with an average droplet diameter of 200 nm. At low surfactant concentrations, the hydrodynamic diameter remains unchanged but above a critical aggregation concentration, it increases dramatically. The phase contrast optical microscopic images of emulsion droplets preadsorbed with polymers of higher molecular weight show a systematic increase in the floc size on increasing surfactant concentration due to biding of polymer-surfactant complexes on several droplets. The dramatic increase in zeta potential of the droplets on increasing ionic surfactant concentration clearly indicates a preferential adsorption of surfactant at the oil-water interface. The enhanced viscosity upon addition of ionic surfactant into polymers confirms the strong interaction between them. Our studies show that lower molecular weight polymers with suitable ionic surfactants can synergistically enhance the stability of formulations, while longer chain polymers induce bridging flocculation. Our results are useful for preparing oil-in-water formulations with long term stability.  相似文献   

17.
The adsorption of sodium dodecyl sulfate (SDS) from aqueous solution onto a calcium fluoride substrate (CaF(2)), in the presence of polyethylene glycol (PEG) of different molecular weights, has been investigated using the interface specific nonlinear optical technique of sum frequency generation (SFG) vibrational spectroscopy. Spectra of adsorbed SDS (in the C-H stretching region) were recorded at the surface of a CaF(2) prism in contact with SDS solutions at concentrations up to the cmc (8 mM) of the pure surfactant and in contact with binary solutions containing SDS and PEG with molecular weights from 400 to 12 000. In contrast with SFG spectra from the same combinations of surfactant and polymer on a hydrophobic surface, there was no evidence of spectra arising from the actual polymer adsorbed on CaF(2) at any polymer molecular weight either in the absence or presence of surfactant. However, there was indirect evidence for the presence of adsorbed polymer from changes in the SDS SFG spectra in the presence of polymer compared with spectra when the polymer was absent. The SFG spectra of SDS at 0.8 mM were closely similar to each other at all polymer molecular weights and different from the spectra in the absence of the polymer. The spectral differences between the polymer present and polymer absent was much smaller when the solution concentration of surfactant was 8 mM.  相似文献   

18.
To test the validity of currently used adsorption theories and understand the origin of the lack of their ability of adequately describing existing surface tension measurement data, we have performed a series of molecular dynamics simulations of the adsorption layer of alkali decyl sulfate at the vapor/aqueous solution interface. The simulations have been performed with five different cations (i.e., Li+, Na+, K+, Rb+, and Cs+) at two different surface concentrations (i.e., 2 micromol/m2 and 4 micromol/m2). The obtained results clearly show that the thickness of the outer Helmholtz plate, a key quantity of the various adsorption theories, depends on two parameters, that is, the size of the cations and the surface density of the anionic surfactant. Namely, with increasing surface concentration, the electrostatic attraction between the two, oppositely charged, layers becomes stronger, leading to a considerable shrinking of the outer Helmholtz plate. Furthermore, this layer is found to be thicker in the presence of larger cations. The former effect could be important in understanding the anomalous shape of the adsorption isotherms of alkali alkyl sulfate surfactants, while the second effect seems to be essential in explaining the cation specificity of these isotherms.  相似文献   

19.
New Monte Carlo simulations are presented for nonionic surfactant adsorption at the liquid/vapor interface of a monatomic solvent specifically investigating the roles of tail attraction and binary mixtures of different tail lengths. Surfactant molecules consist of an amphiphilic chain with a solvophilic head and a solvophobic tail. All molecules in the system, solvent and surfactant, are characterized by the Lennard-Jones (LJ) potential. Adjacent atoms along the surfactant chain are connected by finitely extensible harmonic springs. Solvent molecules move via the Metropolis random-walk algorithm, whereas surfactant molecules move according to the continuum configurational bias Monte Carlo (CBMC) method. We generate thermodynamic adsorption and surface-tension isotherms and compare results quantitatively to single-surfactant adsorption (Langmuir, 2007, 23, 1835). Surfactant tail groups with attractive interaction lead to cooperative adsorption at high surface coverage and higher maximum adsorption at the interface than those without. Moreover, adsorption and surface-tension isotherms with and without tail attraction are identical at low concentrations, deviating only near maximum coverage. Simulated binary mixtures of surfactants with differing lengths give intermediate behavior between that of the corresponding single-surfactant adsorption and surface-tension isotherms both with and without tail attraction. We successfully predict simulated mixture results with the thermodynamically consistent ideal adsorbed solution (IAS) theory for binary mixtures of unequal-sized surfactants using only the simulations from the single surfactants. Ultimately, we establish that a coarse-grained LJ surfactant system is useful for understanding actual surfactant systems when tail attraction is important and for unequal-sized mixtures of amphiphiles.  相似文献   

20.
The effect of the polymer molecular weight on the interaction between pentaethylene glycol n-octyl ether (C(8)E(5)) and poly(acrylic acid) (PAA) has been investigated by a combined experimental strategy including tensiometry, potentiometry, calorimetry, fluorescence quenching and intradiffusion (pulsed gradient spin echo-NMR) measurements. PAA samples with an average molecular weight varying in a wide range (M (w)=2000, 100,000, 250,000, and 450,000) have been considered. The measurements have been performed at constant polymer concentration (0.1% w/w) with varying surfactant molality. In all the considered systems, at low surfactant concentration, adsorption of surfactant monomers onto the polymer chain has been detected. At a C(8)E(5) molality (T(1)) independent of the PAA M (w), surfactant molecules start to aggregate, forming clusters to which the polymer co-participates. Above this concentration, the behavior of the system depends on M (w). In fact, if polymer samples with high molecular weight (M (w)100,000) are employed, all the added surfactant aggregates onto the polymer leading to the polymer saturation and, subsequently, to free micelles formation. Both saturation and free micellization occur at surfactant concentrations which are independent of the polymer molecular weight. C(8)E(5) aqueous mixtures containing PAA with low molecular weight (M (w)=2000) behaves differently, in that, above T(1), only a fraction ( approximately 20%) of the added surfactant molecules interact with the polymer, forming aggregates to which more than one PAA chain participate. In this case, C(8)E(5) free micellization occurs before polymer saturation. The experimental evidences have been interpreted in terms of the subtle balance between the various molecular interactions driving the surfactant-polymer aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号