首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Single nucleotide polymorphisms (SNPs) in odorant receptor genes may influence the protein sequence and consequently also the function of the receptors. An analysis of the HapMap data for human OR3A1 was performed and provided evidence that genetic differences subject to ancestry and gender can be recognized. A genomic comparison of individuals shows the diversity of odorant receptor genes and therefore potentially the variety of the sense of smell. At this time, two complete human genomes are available in public domain, which we used for this purpose.  相似文献   

2.
Single nucleotide polymorphisms (SNPs) in odorant receptor genes may influence the protein sequence and consequently also the function of the receptors. An analysis of the HapMap data for human OR3A1 was performed and provided evidence that genetic differences subject to ancestry and gender can be recognized. A genomic comparison of individuals shows the diversity of odorant receptor genes and therefore potentially the variety of the sense of smell. At this time, two complete human genomes are available in public domain, which we used for this purpose. Correspondence: Anton Beyer, Institute of Theoretical Chemistry, University of Vienna, A-1090 Vienna, Austria.  相似文献   

3.
To make ultrathin films for the fabrication of artificial olfactory systems, odorant biosensors, we have investigated mixed Langmuir and Langmuir-Blodgett films of odorant-binding protein/amphiphile. Under optimized experimental conditions (phosphate buffer solution, pH 7.5, OBP-1F concentration of 4 mg L(-1), target pressure 35 mN m(-1)), the mixed monolayer at the air/water interface is very stable and has been efficiently transferred onto gold supports, which were previously functionalized by self-assembled monolayers (SAMs) with 1-octadecanethiol (ODT). Atomic force microscopy and electrochemical impedance spectroscopy were used to characterize mixed Langmuir-Blodgett (LB) films before and after contact with a specific odorant molecule, isoamyl acetate. AFM phase images show a higher contrast after contact with the odorant molecule due to the new structure of the OBP-1F/ODA LB film. Non-Faradaic electrochemical spectroscopy (EIS) is used to quantify the effect of the odorant based on the electrical properties of the OBP-1F/ODA LB film, as its resistance strongly decreases from 1.18 MOmega (before contact) to 25 kOmega (after contact).  相似文献   

4.
《Analytical letters》2012,45(2-3):202-218
The olfactory system is responsible for the discrimination and identification of myriad odorant molecules at very low concentrations. On the basis of the gene super family encoding olfactory receptors, it has led to the rapid development of cell based olfactory biosensors. Attempts are currently made not only to imitate the mechanism of the biological nose but also to utilize some of its sensor molecules as functional unities in olfactory biosensors. Recently, the development of olfactory biosensors has achieved rapid advances by using protein molecules and cells, even biological organs as functional elements, that is, odorant binding proteins (OBPs) and olfactory receptors (ORs) at the molecular level, cell based gene engineered cells or olfactory receptor neurons (ORNs), and mammalian olfactory organs. With using the living cells expressing olfactory signal proteins as sensing elements, the cell based biosensors have a naturally evolved selectivity to odorant molecules. Furthermore, the biosensors also have the capacity to respond to odorant in a physiologically relevant manner. In this paper, we briefly introduce the molecular basis of olfaction and summarize the cell based olfactory biosensors.  相似文献   

5.
The realization of a reliable receptor biosensor requires stable, long-lasting, reconstituted biomembranes able to supply a suitable biomimetic environment where the receptor can properly work after incorporation. To this end, we developed a new method for preparing stable biological membranes that couple the biomimetic properties of BLMs (bilayer lipid membranes) with the high stability of HBMs (hybrid bilayer membranes); this gives rise to an innovative assembly, named MHBLM (mixed hybrid bilayer lipid membrane). The present work deals with the characterization of biosensors achieved by embedding an ionotropic glutamate receptor (GluR) on MHBLM. Thanks to signal (transmembrane current) amplification, which is typical of natural receptors, the biosensor here produced detects glutamate at a level of nmol L(-1). The transmembrane current changes linearly vs glutamate up to 100 nmol L(-1), while the limit of detection is 1 nmol L(-1). In addition, the biosensor response can be modulated both by receptor agonists (glycine) and antagonists (Mg(2+)) as well, and by exploiting the biosensor response, the distribution of different kinds of ionotropic GluR present in the purified sample, and embedded in MHBLM, was also evaluated. Finally, one of the most important aspects of this investigation is represented by the high stability of the biomimetic system, which allows the use of biosensor under flowing conditions, where the solutions flow on both biomembrane faces.  相似文献   

6.
Protein-based fluorescent biosensors with sufficient sensing specificity are useful analytical tools for detection of biologically important substances in complicated biological systems. Here, we present the design of a hybrid biosensor, specific for a bis-phosphorylated peptide, based on a natural phosphoprotein binding domain coupled with an artificial fluorescent chemosensor. The hybrid biosensor consists of a phosphoprotein binding domain, the WW domain, into which has been introduced a fluorescent stilbazole having Zn(II)-dipicolylamine (Dpa) as a phosphate binding motif. It showed strong binding affinity and high sensing selectivity toward a specific bis-phosphorylated peptide in the presence of various phosphate species such as the monophosphorylated peptide, ATP, and others. Detailed fluorescence titration experiments clearly indicate that the binding-induced fluorescence enhancement and the sensing selectivity were achieved by the cooperative action of both binding sites of the hybrid biosensor, i.e., the WW domain and the Zn(II)-Dpa chemosensor unit. Thus, it is clear that the tethered Zn(II)-Dpa-stilbazole unit operated not only as a fluorescence signal transducer, but also as a sub-binding site in the hybrid biosensor. Taking advantage of its selective sensing property, the hybrid biosensor was successfully applied to real-time and label-free fluorescence monitoring of a protein kinase-catalyzed phosphorylation.  相似文献   

7.
Liu L  Liu C  Shang L  Li D  Yong D  Qi L  Dong S 《Talanta》2010,83(1):31-35
In this paper, we first reported the viable but nonculturable (VBNC) cells used for fabricating biosensor. The organic-inorganic hybrid material composed of silica and the grafting copolymer of poly(vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)) was used to immobilize microbial cells for biosensor fabrication. The VBNC cells were formed after the hybrid material dried, showing the cell walls were sacrificed. With the intracellular enzymes as core and the “sacrificed” cell walls as shell, the present VBNC cells maybe considered as a core/shell structure. The extracellular material worked as the scaffold for core/shell structure. The core/shell structure and the scaffold structure were demonstrated by single-cell level image analysis using confocal laser scanning microscopy (CLSM). The electrochemical method was adopted for further examining the enzyme activity of VBNC cells. The VBNC cells did not need nutrient treatment and other physicochemical factors for cell growth, which is a significant contribution for storing biosensor. A glucose-glutamic acid biosensor fabricated by the VBNC cells exhibited long-term storage stability for 100 days.  相似文献   

8.
The AM 1 semiempirical SCF MO method developed by Dewar and co-workers has been employed to compute possible interaction processes of the odorant molecules cocaine, methyl benzoate, and benzaldehyde with the biological substrate lysine. The only process predicted as possible in each case was nucleophilic attack on the carbonyl carbons of each odorant by the nitrogen lone pairs on lysine. The remote amino group of lysine in each case was predicted to react with lower activation enthalpy than did the α-amino group, a prediction consistent with preliminary experimental data from these laboratories. Although the computed activation enthalpies were high (ca. 40 kcal mol?1) for the gas-phase processes, it is conceivable that such processes could occur by alternate pathways with considerably lower ctivation energies in solvated media such as exists in the presence of mucus-containing olfactory binding protein in vertebrate olfactory reception. © 1992 John Wiley & Sons, Inc.  相似文献   

9.
The molecular mechanisms underlying odorant detection have been investigated using the chip based SPR technique by focusing on the dynamic interactions between transmembrane Olfactory Receptor OR1740, odorant ligands and soluble Odorant-Binding Protein (OBP-1F). The OR1740 present in the lipid bilayer of nanosomes derived from transformed yeasts specifically bound OBP-1F. The receptor preferential odorant ligand helional released bound OBP-1F from the OR-OBP complex, while unrelated odorants failed to do so. OBP-1F modified the functional OR1740 dose-response to helional, from a bell-shaped to a saturation curve, thus preserving OR activity at high ligand concentration. This unravels an active role for OBPs in olfaction, in addition to passive transport or a scavenger role. This sensorchip technology was applied to assessing native OBP-1F in a biological sample: rat olfactory mucus also displayed significant binding to OR1740 nanosomes, and the addition of helional yielded the dissociation of mucus OBP from the receptor.  相似文献   

10.
An easy procedure to obtain extracts enriched in trixagol monomalonylesther (1) from aerial parts of the plant Belladia trixago chemotype Trix was developed. Preparation of (+)-dihydro-gamma-ionone (4) was carried out directly from the extracts with good yields by selective oxidation. Other interesting odorant products as alpha-ambrinol (5), ambraldehyde (6) and the tricyclic compound 7 were synthesized very efficiently using (4) as intermediate.  相似文献   

11.
Gibbons  P. A. 《Chromatographia》1984,19(1):254-256
Summary The individual sulphur compounds that make up the odorant in natural gas are analysed with purpose-made equipment, using chromatographic separation and a flame photometric detector. Presented at the 15th International Symposium on Chromatography, Nürnberg, October 1984  相似文献   

12.
There has been increasing interest in utilizing bottom‐up approaches to develop synthetic cells. A popular methodology is the integration of functionalized synthetic membranes with biological systems, producing “hybrid” artificial cells. This Concept article covers recent advances and the current state‐of‐the‐art of such hybrid systems. Specifically, we describe minimal supramolecular constructs that faithfully mimic the structure and/or function of living cells, often by controlling the assembly of highly ordered membrane architectures with defined functionality. These studies give us a deeper understanding of the nature of living systems, bring new insights into the origin of cellular life, and provide novel synthetic chassis for advancing synthetic biology.  相似文献   

13.
In the basic approach to investigations of neuronal--glial interactions during both normal brain development and its pathogenesis, embryonic brain cell populations were fractionated into purified neuronal and glial components. Using separation procedures based on differential adhesion and cytotoxicity, the isolated neuronal and glial phenotypes could be identified by distinct morphological and biochemical characteristics, including the visualization of glial fibrillary acid protein (GFA) within glial cells in immunohistochemical assays with monospecific anti-GFA serum. When unfractionated cerebrum cells dissociated from 10-day chick or 14-day mouse embryos were plated as monolayers and cultured for 1--14 days, monospecific antiserum against fibronectin (LETS glycoprotein) was found to react with many, but not all, of the cells as revealed by indirect immunofluorescence microscopy. The isolated neuronal and glial components of these populations were used to determine whether the appearance of membrane-associated fibronectin was characteristic of one cell type or the other, or both, and if neuronal--glial cell interaction was required for its expression. It was found that the surfaces of glial cells, completely isolated from neurons, showed an intense fluorescent reaction to the anti-fibronectin serum. In contrast, the purified neuronal cultures showed no fluorescence with either the anti-GFA or anti-fibronectin sera. These results demonstrate fibronectin as a cell surface protein associated primarily with glial cells and independent of neuronal--glial cell interaction for its expression. Furthermore, the results indicate that the fibronectin observed on glial cell surfaces in these cultures is produced endogenously and is not due to the preferential binding of fibronectin present in the culture medium. The role of fibronectin as an adhesive molecule in neuronal--glial interactions is discussed.  相似文献   

14.
In this study, a new glucose biosensor was fabricated by immobilizing glucose oxidase (GOx) on platinum nanoparticles (Pt NPs) decorated reduced graphene oxide (rGO)/Zn‐MOF‐74 hybrid nanomaterial. Herein, the biosensor fused the advantages of rGO with those of porous Zn‐MOF and conductive Pt NPs. This has not only enlarged the surface area and porosity for the efficient GOx immobilization and faster mass transport, but also provided favorable electrochemical features such as high current density, remarkable electron mobility through metal nanoparticles, and improved electron transfer between the components. The GOx‐rGO/Pt NPs@Zn‐MOF‐74 coated electrode displayed a linear measurement range for glucose from 0.006 to 6 mM, with a detection limit of 1.8 μM (S/N: 3) and sensitivity of 64.51 μA mM?1 cm?2. The amperometric response of the enzyme biosensor demonstrated the typical behavior of Michaelis‐Menten kinetics. The obtained satisfying sensitivity and measurement range enabled fast and accurate glucose measurement in cherry juice using the fabricated biosensor. The water‐stable Zn‐MOF‐74 demonstrated higher enzyme loading capacity and can be potent supporting material for biosensor construction.  相似文献   

15.
ABSTRACT: BACKGROUND: Ageing is associated with gastrointestinal dysfunction, which can have a major impact on quality of life of the elderly. A number of changes in the innervation of the gut during ageing have been reported, including neuronal loss and degenerative changes. Evidence indicates that reactive oxygen species (ROS) are elevated in ageing enteric neurons, but that neurotrophic factors may reduce generation of neuronal ROS. Two such factors, glial cell line derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3) have also been found to protect enteric neurons against oxidative stress induced cell death of enteric ganglion cells in vitro. We have investigated the possible roles of neurotrophic factors further, by examining their expression in the gut during ageing, and by analysing their effects on antioxidant enzyme production in cultures of enteric ganglion cells. RESULTS: Analysis of the expression of GDNF and its receptors c-Ret and GFR alpha 1in rat gut by RTPCR showed that expression continues throughout life and into ageing, in both ad libitum(AL) and calorically-restricted (CR) animals. Levels of expression of GDNF and GFR alpha 1 were elevated in 24 month AL animals compared to 24 month CR animals, and to 24 CR and 6 month control animals respectively.The related factor Neurturin and its receptorGFR alpha 2 were also expressed throughout life, the levels of the GFR - alpha-2B isoform were reduced in 24 m AL animals. Immunolabelling showed that c-Ret and GFR alpha 1 proteins were expressed by myenteric neurons in ageing animals. GDNF, but not NT-3, was found to increase expression of Cu/Zn superoxide dismutase and catalase by cultured enteric ganglion cells. CONCLUSIONS: The neurotrophic factors GDNF and neurturin and their receptors continue to be expressed in the ageing gut. Changes in the levels of expression of GDNF , GFR alpha-1 and GFR alpha-2b isoform occurred in 24 m AL animals. GDNF, but not NT-3, increased the levels of antioxidant enzymes in cultured enteric ganglion cells, indicating a possible mechanism for the reported protective effect of GDNF against menadione-induced neuronal apoptosis in the ageing gut. Together these data suggest that GDNF family members may play a protective role in the gut throughout life, and support the suggestion that dysregulation of neurotrophic factor support could contribute to neuronal ageing in the gut.  相似文献   

16.
Novel and selective microbial amperometric biosensors that use Gluconobacter oxydans cells to monitor the bacterial bioconversion of glycerol (Gly) to 1,3-propanediol (1,3-PD) are described. Two different mediators, ferricyanide and flexible polyvinylimidazole osmium functionalized polymer (Os-polymer), were employed to prepare two different microbial biosensors, both of which gave high detection performance. The good operational stabilities of both types of biosensor were underlined by the ability to detect 1,3-PD throughout 140 h of continuous operation. Both microbial biosensor systems showed excellent selectivity for 1,3-PD in the presence of a high excess of glycerol [selectivity ratios (1,3-PD/Gly) of 118 or 245 for the ferricyanide and Os-polymer systems, respectively]. Further, the robustness of each microbial biosensor was highlighted by the high reliability of 1,3-PD detection achieved (average RSD of standards <2%, and well below 4% for samples). The biosensor implementing the Os-polymer mediator exhibited high selectivity towards 1,3-PD detection and allowed moderate sample throughput (up to 12 h−1) when integrated into a flow system. This system was used to monitor the concentration of 1,3-PD during a real bioprocess. Results from biosensor assays of 1,3-PD in bioprocess samples taken throughout the fermentation were in a very good agreement with results obtained from reference HPLC assays (R 2 = 0.999).  相似文献   

17.
In this contribution we focus on the on-line analysis of neuronal cells embedded in gel matrices by means of variations in their dielectric and conductive properties. For impedance measurement of thin gel films in flow-through regime a novel impedimetric biosensor was developed. A technique for the preparation of gels containing Neuro-2a neuroblastoma cells (N2a) in between the measurement electrodes was set up. Impedance spectra of gels with N2a cells were analyzed and cell viability was tested. Experimental results showed that even at frequencies (>>1 MHz) and a gel concentration of 2 % with ~8300 cells/μL conductive properties dominate the spectrum.  相似文献   

18.
《Analytical letters》2012,45(2-3):187-201
This paper reviews the functions of dielectrophoresis (DEP) that have been applied to biosensor and biochip platforms for bacteria detection, including concentration of bacterial cells from continuous flows, separation of target bacterial cells from non-target cells, as well as the enhancement of antibody capture efficiency on biosensor and biochip surfaces. DEP could provide effective concentration and separation simultaneously in well-designed microfluidic biosensor and biochip systems. The integration of DEP with a detection system allows the integration of sample preparation and enrichment steps with detection, which has the potential to eliminate the traditionally used time-consuming culture-based enrichment steps and other multiple off-chip sample preparation steps. DEP is also useful in biosensor and biochips platforms for enhancing antibody capture efficiency in both flow-through and non-flow-through microdevices. The enhanced antibody capture efficiency could allow the sensor capture more cells and to be detected by the sensor, particularly in dealing with low number of cells. The integration of multifunctions of DEP into biosensor and biochip platform has the potential to improve the detection of bacterial cells.  相似文献   

19.
A glucose biosensor based on polyvinylpyrrolidone (PVP) protected Prussian blue nanoparticles (PBNPs)-polyaniline/multi-walled carbon nanotubes hybrid composites was fabricated by electrochemical method. A novel route for PBNPs preparation was applied in the fabrication with the help of PVP, and from scanning electron microscope images, Prussian blue particles on the electrode were found nanoscaled. The biosensor exhibits fast current response (<6 s) and a linearity in the range from 6.7x10(-6) to 1.9x10(-3) M with a high sensitivity of 6.28 microA mM(-1) and a detection limit of 6x10(-7) M (S/N=3) for the detection of glucose. The apparent activation energy of enzyme-catalyzed reaction and the apparent Michaelis-Menten constant are 23.9 kJ mol(-1) and 1.9 mM respectively, which suggests a high affinity of the enzyme-substrate. This easy and controllable construction method of glucose biosensor combines the characteristics of the components of the hybrid composites, which favors the fast and sensitive detection of glucose with improved analytical capabilities. In addition, the biosensor was examined in human serum samples for glucose determination with a recovery between 95.0 and 104.5%.  相似文献   

20.
We describe how mammalian olfactory receptors (ORs) could be used as sensing elements of highly specific and sensitive bioelectronic noses. An OR and an appropriate G(alpha) protein were co-expressed in Saccharomyces cerevisiae cells from which membrane nanosomes were prepared, and immobilized on a sensor chip. By Surface Plasmon Resonance, we were able to quantitatively evaluate OR stimulation by an odorant, and G protein activation. We demonstrate that ORs in nanosomes discriminate between odorant ligands and unrelated odorants, as in whole cells. This assay also provides the possibility for quantitative assessment of the coupling efficiency of the OR with different G(alpha) subunits, without the interference of the cellular transduction pathway. Our findings will be useful to develop a new generation of electronic noses for detection and discrimination of volatile compounds, particularly amenable to micro- and nano-sensor formats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号