首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The accumulation of phytochrome in the dark was measured for Avena sativa seedlings after a white light pretreatment and for Sorghum vulgare seedlings after continuous red or far-red light treatments, using the herbicide Norflurazon to prevent greening under continuous irradiation. In both cases the accumulation of phytochrome depends on the state of the phytochrome at the light-dark transition: high Pfr levels (red light pulse) led to a slower rate of phytochrome accumulation than lower Pfr levels (long wavelength far-red (RG 9) light pulse). Poly-(A+)-RNA was isolated fromA. sativa seedlings grown for 48 h in darkness + 24 h WL + light pulse (5 min) (red, RG 9 light, red followed by RG 9 light or RG 9 followed by red light pulse) + 19 h darkness. The poly-(A+)-RNA was translated in a rabbit reticulocyte lysate system and the translation products were immunoprecipitated by specific anti-phytochrome antibodies. It was demonstrated that the activity of mRNA coding for phytochrome was under phytochrome control.  相似文献   

2.
Abstract— De-etiolation of maize seedlings reduces their sensitivity for red light potentiation of rapid chlorophyll accumulation in white light. An earlier proposal (Raven and Spruit, 1973) attributes this to migration of the far-red absorbing form of phytochrome (Pfr) to receptors essential for chlorophyll synthesis, thereby increasing the local Pfr/total phytochrome (Ptot)ratio. We have studied etioplasts as possible loci for such P(r receptors. The level of spectrophotometric phytochrome in purified etioplasts isolated from red preirradiated maize seedlings was higher than that of dark grown plants. The difference was marginally significant, however. We argue that migration of a fraction of cytoplasmic Pfr to the etioplasts, too small to be spectrophotometically demonstrable, could still meet the requirements of the model. Dark destruction of bulk spectrophotometric Pfr following saturating red irradiation of seedlings is not paralleled by a decrease of etioplast phytochrome. the latter remaining essentially constant over long periods. On the other hand, the potentiating effect of red light in intact seedlings is still partially reversible by far red light even after 24 h of darkness when destruction of bulk Pfr is complete. Since this demonstrates persistent presence of Pfr active in potentiation, we propose that at least part of this Pfr is associated with the etioplasts.  相似文献   

3.
Abstract— Face-to-profile chloroplast movement in Mougeotia was induced by sequences of strong blue and red short irradiations. This type of response occured only when blue light was applied prior to or simultaneously with red light, and far-red irradiation was necessary after the sequence to cancel the remaining gradient of the far-red absorbing form of phytochrome Pfr. The dependence of the response magnitude on blue and red light sequences was studied for a wide range of light durations and dark intervals. The relationship between the response and the dark interval points to the lack of direct coupling between phytochrome and blue-absorbing “cryptochrome”. It was postulated that a photoproduct having a life-time of2–3 min is formed by the blue-light-mediated reaction. This photoproduct interacts with phytochrome during its transformation or with its final Pfr form.  相似文献   

4.
Abstract— The kinetics of the far-red absorbing form of phytochrome (Pfr) appearance from intermediates in the pathway from the red absorbing form of phytochrome (Pr) to Pfr that accumulate under high fluence rate white light have been investigated in 3-day old dark grown Amaranthus caudatus seedlings. The appearance of P(r after a 5 s white light pulse was measured over the temperature range -8 to 25°C in samples flushed with O2 or N2. Over the whole temperature range under anaerobic conditions the kinetics of the slowest component of Pfr appearance are faster than in the presence of O2. Arrhenius plots are linear over this temperature range and indicate the activation energy for the slowest component of Pfr appearance is 44.05 ± 1.97 kJ mol?1 for O2 and 53.69 ± 4.86 kJ mol?1 for N2.  相似文献   

5.
Abstract— A method is described to determine spectral properties of phytochrome in vivo. For photochrome in 7-day-old dark-grown Cucurbita pepo L. seedlings the mole fraction of the far-red-absorbing form (Pfr) present at photoequilibrium at 664 nm was found to be 0.76 ± 0.02 in vivo. Based on reflectance measurements, the photon fluence rate just below the surface of the cotyledons was calculated. Local rates of photoconversion for known local fluence rates were measured across cotyledons after non-saturating irradiations with wavelengths between 544 and 781 nm and in situ molar photoconversion coefficients were obtained. In contrast to purified oat phytochrome, the in situ molar photoconversion coefficients for Pfr show a strong shoulder between 660 and 700 nm. The maximum of Pfr absorption is at 726 nm. An isosbestic point of phytochrome is found at 686 nm. The mole fraction of Pfr present at photoequilibrium with 686 nm light is 0.58. The ratio of photoconversion quantum yields (that for Pr→ Pfr divided by that for Pfr→ Pr) is 1.38 ± 0.06.  相似文献   

6.
Abstract— Kinetics of the destruction of the far red absorbing form of phytochrome (Pfr), measured by in vivo spectroscopy, show two phases: after a saturating red light pulse, rapid first order decay results in the loss of most, but not all, of the detectable Prr; decay of the rest is much slower. The concentration of the more stable Pfr is positively correlated to the concentration of the total Pfr established at time zero. The linear relationship between total and ‘stable’ Pfr exludes the existence of a threshold level of Pfr for fast destruction. Photoconversion of the Pr (red absorbing form of phytochrome) present during the slow decay, by exposure to a second light pulse, is followed by fast destruction of most of the newly formed P,r, whereas some Pfr formed by the first pulse still remains. The experiment suggests that not all Pfr molecules are accessible to the same destruction mechanism, i.e. there are two populations of PfI.  相似文献   

7.
Abstract— –The kinetics of phytochrome destruction in vivo of coleoptiles and mesocotyls of etiolated grass seedlings (Avena sativa L., Zea mays L.) in continuous light were investigated using wavelength and irradiance as experimental variables. In contrast to dicotyledonous seedlings, the destruction reaction of these monocotyledons is saturated at very low levels of the far-red absorbing form of phytochrome, Pfr (e.g. at 1% of total phytochrome, corresponding to the photostationary state established by 727 nm light, in 2.5-day-old dark-grown Avena). On the other hand, the first-order rate constant of monocotyledon destruction may be at least one order of magnitude larger than in dicots, as indicated by the zero-order rate measured in the presence of saturating amounts of Pfrl/2 1.5 min in Avena). At sub-saturation Pfr levels, the destruction rate was found to be determined by the rate constants of the photoreactions over a wide range of wavelengths and irradiances. These results can be interpreted in terms of a destruction enzyme with high catalytic efficiency but limited availability. Analysis of in vivo binding of phytochrome to a pelletable cell structure during destruction revealed that both the pelletable and the non-pelletable fraction lose photoreversiblility with similar rates and thus provide no useful information with respect to a causal relationship between the two processes. However, due to the short half-life of Pfr at sub-saturation levels (which make the photoreactions and intermediary processes rate-limiting for destruction even at relatively high irradiances) the existence of a similarly rapid dark-reaction between the photoreactions producing Pfr and the destruction reaction could be demonstrated. This dark reaction displays the properties of Pfr binding to a receptor site.  相似文献   

8.
PHYTOCHROME ACTION: A REAPPRAISAL   总被引:4,自引:0,他引:4  
Stems of fully green plants show at least two types of response to light. In one, Pfr inhibits elongation. The second is a promotion of elongation which operates only in light; the effectiveness of red and far-red wavelengths indicates that this response is also mediated through phytochrome. Studies of the de-etiolation process also provide evidence for two modes of action of phytochrome; one is a Pfr-dependent reaction, and the second requires continuous light (or frequent short irradiations). It is proposed that, in addition to reactions which require Pfr and proceed in darkness, an important reaction of phytochrome in green plants occurs only in light. We have termed these two modes of action of phytochrome “static” and “dynamic”. The static mode operates after a brief exposure to light which establishes Pfr; the potential responses are largely reversible by far-red and exhibit reciprocity. The dynamic mode operates only in light and the responses do not show reciprocity. We consider that this mode operates through the transition from one bound form of phytochrome to another. The possible involvement of these two modes of action of phytochrome in photoperiodic mechanisms is discussed.  相似文献   

9.
Abstract— To probe the nature of primary photoprocess and the mechanism of the phototransformation of undegraded 124 kDa oat phytochrome, solvent deuterium isotope effects on the fluorescence and phototransformation of phytochrome have been investigated. The fluorescence intensity and lifetime of phytochrome (Pr form) are greater in D20-buffer than in H2O-buffer, suggesting a possible involvement of proton transfer in the primary photoprocess of phytochrome. Although the photostationary equilibrium (Pr to Pfr ratio) was not altered by deuterium oxide, in contrast to degraded phytochrome, the rate constants of both transformations, Pr→ Pfr and Pfr→ Pr were enhanced by up to 24%. The Pr to Pfr phototransformation of degraded phytochrome, however, was retarded by about the same percentage in D2O. These opposite effects of D2O with degraded and undegraded phytochromes underscore the fact that the Pr form from the former reverts to the Pr form in the dark, apparently catalyzed by deuterated general and/or conjugate acidic group(s). With the degraded phytochrome the deuterium oxide enhancement of the rate of dark reversion was approximately 2-fold (Sarkar and Song, 1981). Both the fluorescence intensity and the rates of phototransformation of phytochrome were enhanced in D2O with successive photocyclings (Pr→ Pfr→ Pr→ Pfr→ Pr etc.) with alternating red and far-red irradiation. It has been proposed that successive photocycling of phytochrome in D2O results in proton-deuteron exchange in the partially exposed Ptr chromophore and/or its surrounding amino acid residues.  相似文献   

10.
The enhanced phytochrome pelletability that results from in vivo irradiation of Avena shoots may be divided into two operationally defined sequential stages: the in vivo development of a “potential to pellet” and the “expression” of this potential in vitro. Kinetic studies confirm previous findings that the generation of this “potential to pellet” is a very rapid (complete in < 10 s, 25°C), genuinely intracellular process, itself photoreversibly induced by Pfr. In addition, it is shown that the sustained development of the “potential to pellet”, that proceeds in the dark at 0°C following a red pulse, requires Pfr continually in the cell over the entire development period. Far red light immediately terminates further development of the red-induced “potential” at any point during the development phase. No immediate reduction is observed, however, in that level of “potential pelletability” already attained at the time of the far red pulse. This indicates that the level of “potential pelletability” established in vivo is insensitive to the form of the pigment at extraction regardless of the level reached. “Expression” of the “potential to pellet” refers to the actual detection in homogenates of an enhanced physical association of phytochrome with pelletable material. Maximum “expression” requires the presence of a divalent cation in the medium during homogenization. Rapid posthomogenization addition of Mg2+ to Mg2+-free extracts sustains enhanced pelletability but with rapidly declining effectiveness over the fmt 1–2 min after extraction. The rate of decline is faster if the phytochrome is present as Pfr than as Pr in the homogenate. Neither these nor previous data permit a distinction to be made between (a) preservation by the cation of a pre-existing intracellular interaction, and (b) a Mg2+-mediated induction of an artifactual, in vitro association predetermined in the cell by a genuine phyto-chrome-controlled process. Various formalistic models are discussed in the context of these and other data.  相似文献   

11.
Abstract— Apparent synthesis* of the enzyme lipoxygenase in the cotyledons of the mustard seedling (Sinapis alba L.) is controlled by phytochrome (Pfr ground state)? through a threshold (all-or-none) mechanism. This response was used to determine physiologically the photostationary states, Λ that is, the [Pfr]/[Ptot] ratios established by different wavelengths in the red and far-red range of the spectrum, including the standard red and far-red sources used in this laboratory (Mohr, 1966). Under the premises (for which justification has been given on previous occasions) that the [Pfr]/[Ptot] ratio for standard red light is 0.8, and that the decay of Pfr is a first-order process with a half-life of 45 min, the [Pfr]/[Ptot] ratios determined physiologically by means of the lipoxygenase response agree with the [Pfr]/[Ptot] ratios determined spectrophotometrically by Hartmann and Spruit (cf. Fig. 9 in Hanke et al., 1969) in hypocotyl hooks of mustard seedlings. In the hook the fr, that is, the [Pfr]/[Ptot] ratio for standard far-red, is found to be 0.023. In the cotyledons, this ratio is several times higher (Schafer et al., 1972). The conclusion that apparent lipoxygenase synthesis in the cotyledons is controlled by phytochrome located in the hook has been substantiated by further spectrophotometric (Schäfer et al., 1973) and physiological experiments (H. Oelze-Karow and H. Mohr, in preparation). The minimum steepness of the threshold was determined. An increase of the Pfr level from 118 (relative units) to 130 leads to an instantaneous and total suppression of apparent lipoxygenase synthesis; a corresponding decrease from 130 (relative units) to 118 leads to an immediate resumption of apparent LOG synthesis at full speed. It is concluded that an explanation of the experimental facts requires a cooperative effect on the level of Pfr, a high degree of synchrony on the cellular and organismic level and rapid communication between the hypocotyl hook and the cotyledons. *The term ‘apparent synthesis’ is used operationally in the present paper to denote any increase of enzyme activity, although de novo synthesis of lipoxygenase has not so far been rigorously demonstrated. The usual inhibitor experiments (cf. Oelze-Karow et al., 1970) have led to the conclusion that intact RNA and protein synthesis is required for an increase of lipoxygenase activity.  相似文献   

12.
Two non-photosynthetic photoreceptors (phytochrome and a blue light photoreceptor) are involved in light-mediated anthocyanin synthesis in the mesocotyl of Sorghum seedlings. The present study was undertaken to investigate the kind of interaction between phytochrome and the blue light photoreceptor. The data show that phytochrome (Pfr) can only act once a blue light effect has occurred. On the other hand, the blue light effect cannot express itself without Pfr. It is concluded that there is an obligatory dependency (or sequential interaction) between the blue light effect and the light effect occurring through phytochrome, although the blue light photoreaction per se is not affected by the presence or absence of phytochrome. The latter statement is based on the results of dichromatic experiments, i.e. simultaneous, high fluence rate irradiation with two kinds of light. Blue light can be replaced by UV light. It is not clarified yet whether the effect of blue and UV light is due to the same photoreceptor.  相似文献   

13.
Abstract Fluorescence of phytochrome is found in the cells of etiolated monocotyledonous and dicotyledonous plants. The red light-absorbing form of phytochrome (Pr) fluoresces at 77 K with a yield 0.3±0.1 and maxima at 672–673 nm and 684–686 nm in the excitation and emission spectra, respectively. The emission is characterized by the sharp temperature dependence of its intensity, its high (~ 40%) polarization, and the violation of the mirror symmetry rule. Connection of the fluorescence with Pr photoreactions is followed in the interval 77–293 K. A P, photoproduct, lumi-R, is fluorescent with maxima at 696 nm and 705 nm in the excitation and emission spectra; the far-red light absorbing form of phytochrome (Pfr) is practically nonfluorescent. Three isochromic emitting Pr species are present differing in their photochemical properties: Pr1 and Pr2 which phototransform irreversibly and reversibly at T 170 K into lumi-R, and lumi-R2, respectively, and Pr3 which undergoes photoconversion only at T > 240 K. The activation energies of Pr2 and Pr3 photoreactions are evaluated to be 2.9–3.3 kJ/mol and 26 kJ/mol. Complex dynamics of changes of Pr fluorescence and of the extent of its decrease in the photoconversion Pr? Pfr in germinating pea and bean seeds suggests the existence of two Pr pools one of which is incapable of Pr? Pfr phototransformation. Thus, the developed fluorescent method of phytochrome assay and investigation in the cell revealing multiplicity of phytochrome states in vivo proves to be very sensitive (about 1 ng) and informative.  相似文献   

14.
Abstract —Synthesis* of the enzyme lipoxygenase (LOG)? in the cotyledons of the mustard seedling (Sinapis alba L.) is controlled by phytochrome (Pfr) through a threshold (all-or-none) mechanism. The data of the present paper confirm the previous assumption (Oelze-Karow and Mohr, 1973) that the primary reaction of Pfr (Pfr+ X → PfrX ? PfrX‘) is the site of the highly cooperative threshold reaction. Suppression of LOG synthesis depends on the presence of PfrX’. However, PfrX‘ is only stable above the threshold level of Pfr. If the level of Pfr is below the threshold, PfrX is stable, and no suppression of LOG synthesis occurs. As long as the level of Pfr remains below the threshold, no destruction of Pfr takes place. Destruction of Pfr occurs only as long as [Pfr]?is above the threshold level. Thus the simplest formulation of the actual threshold reaction in the LOG response is PfrX?frX’ state at [Pfr] below threshold no Pfr destruction LOG synthesis suppressed state at [Pfr] above threshold Pfr destruction(1kd LOG synthesis unimpaired The reversible threshold reaction is thus an integral part of the “primary reaction” of Pfr occurring at the “matrix” specific for the LOG response. The data and conclusions on the LOG response are consistent with an “open phytochrome-receptor model” recently advanced by E. Schäfer (1975). The data are not consistent with the concept that a rapid dark reversion (Pfr→Pr) exists in dicotyledonous seedlings and that the degree of Pfr dark reversion strongly depends on the initial photostationary state, φ?, established by a saturating light pulse.  相似文献   

15.
Abstract— Circular dichroic properties of native, 124 kDa phytochrome from etiolated Avena sativa seedlings have been examined and compared with those of degraded phytochrome (118/114 kDa). The CD spectrum of the Pr form of 124 kDa phytochrome does not differ significantly in the visible region from that of 118/114 kDa Pr. In contrast, the CD spectrum of the Pfr form of 124 kDa phytochrome differs from that of the 118/114 kDa species in the far-red, red and blue regions of the spectrum. This result confirms that the NH2-terminal polypeptide segment has a critical role in chromophore-protein interaction in the Pfr but not in the Pr form. In the UV region, 124 kDa phytochrome exhibits a photoreversible difference between the CD spectra of Pr and Pfr, whereas no such difference is observed for 118/114 kDa preparations. These data suggest a possible photoreversible change in secondary structure of the 124 kDa phytochrome polypeptide that requires the presence of the 6/10 kDa NH2-terminal domain to occur.  相似文献   

16.
17.
Abstract— A 15 ns, tunable dye laser was used to induce germination of the photoblastic seeds of Lactuca sativa. One red laser flash in the range from 620 to 690 nm was sufficient to increase germination significantly above the dark level. Repeated flashes, however, were necessary to saturate the physiological response. The wavelength dependence for induction of germination differed for single and repetitive flashes. After saturating far-red irradiation, the effect of single-flash induction was a function primarily of the absorption spectrum of Pr. In addition, the establishment within the lifetime of a flash of a photochromic system between the red absorbing form of phytochrome (Pr) and the sum of photoreversible intermediate forms (ΣI700) contributes to this wavelength dependence at high fluence rates. This photochromic system is assumed to be shifted significantly toward Pr by wavelengths 660 nm. Similarly, a strong double-flash effect, which is seen as an increase in effectiveness when a given total fluence is provided by two consecutive flashes rather than by one flash only, is restricted to those wavelengths that considerably shift the photochromic system Pr?ΣI700 toward Pr. Finally, the saturation level produced by a series of laser flashes depends, additionally, on absorption by Pfr.  相似文献   

18.
Stabilization of phytochrome intermediates by low temperature   总被引:6,自引:0,他引:6  
Abstract— The photocon versions between the red-absorbing form (Pr) and the far-red absorbing form (Pfr) of phytochrome were examined at low temperatures. Partially purified preparations of the chromoprotein were examined in phosphate buffer and in 25 per cent buffer plus 75 per cent glycerol. Actinic irradiation of P, below – 150°C produces an intermediate with maximum absorbance near 695 nm, R695. Actinic irradiation of R695 converts it back to P. Above – 150°C R695 decays to a low extinction form of phytochrome, R, which in turn decays to Pfr upon further warming. Light absorption by Pfr below – 150°C results in the formation of an intermediate form of phytochrome with maximum absorbance near 660 nm, FR660. FR660 decays upon warming to a lower extinction form, FR'. which in turn decays to Pr on continued warming. No evidence was obtained to suggest that any of the observed intermediate states are involved in more than one direction of phytochrome photocon version.  相似文献   

19.
Abstract— Dormant seeds of Lactuca saliva L. (cv. ‘May Queen’) germinate after a brief light treatment. The seeds escape from photoreversibility by far-red irradiation after a lag time. The duration of the lag decreases with increasing levels of the far-red absorbing form of phytochrome (Pfr). During the lag time the percentage of seeds germinating after the reversing far-red irradiation is slowly rising. This is not due to an escape reaction proper, but to an increase of sensitivity to Pfr.  相似文献   

20.
Abstract— Spores of Dryopteris paleacea and D. filix-mas are positively photoblastic with an optimum in the action spectrum around 665 nm. Light is perceived by phytochrome and the relationship between germination and mole fraction of the far-red-absorbing form of this pigment, Pfr, was investigated with saturating irradiations between 662 and 747 nm under low-fluence-rate conditions. These control irradiations establish a proportion of the total phytochrome, P,tot, as Pfr with Pfr/Ptot–φ at equilibrium. These φ -values were calculated according to data for native oat phytochrome (Kelly and Lagarias, 1985, Biochemistry 24, 6003) and the spectral characteristics of the interference filters. With this method a linear relationship could be found between φ and germination from 2 to 70% for D. paleacea and from 2 to 90% for D. filix-mas, if probit germination was plotted vs probit φ This correlation formed the basis of investigating the phytochrome photoconversion by dye-laser pulses of 380 ± 30 ns under high-fluence-rate conditions, and thus to test quantitatively the impact of the photoreversibility of intermediate reactions of the photoconversion and the red-absorbing form of phytochrome, Pfr on the final Pfr-level. Spore germination was initiated by a single-laser pulse in the range from 592 to 700 nm. The most effective wavelengths were 649 and 660 nm in both species, and at saturation maximal germination (ca. 50%) was obtained from 592 to 665 nm for D. paleacea or ca. 60% germination from 592 to 670 nm for D. filix-mas. Both saturation levels correspond to a ø-value between 0.40 and 0.45. This significantly diminished photoconversion is a consequence of the high-fluence-rate conditions during the laser pulse which establishes the photochromic system between Pr and a set of very early intermediates, Ii700, (= Pr? Ii700). This system can be described by the extinction coefficients of Pr and the intermediates Ii700, and by the quantum yields, 4,φ for the forward and reverse reactions as φ If φ is calculated, assuming a quantum yield of 1:1 for both reactions and with the extinction coefficients of Pr and Ii7(l() (= lumi-R) given by Eilfeld and Riidiger (1985, Z. Naturforsch. 40c , 109), significantly higher values are calculated for / as compared to φ found in the control experiments. These results can be explained either: (i) with a quantum yield ratio φpr-φ1700: φ1700φpr=1:1 and an assumed additional dark reaction leading from Ii700 or later intermediates back to Pr: or (ii) with a quantum yield ratio φpr φ 1700: φ1700 φpr=1:2. In this case all Ii700 have to relax to Pfr. In this case all Ii700 have to relax to Pfr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号