首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On the Thermal Behaviour of Heteropoly Acids of the Type H3+n[PVnMo12?nO40] · x H2O (n = 0, 1, 2, 3). I. Thermogravimetry, UV-VIS, and X-ray Studies The thermal behaviour of pure and SiO2-supported dodecamolybdophosphoric acid and its vanadium containing homologues was investigated using differential thermoanalysis, thermogravimetry, UV-Vis spectroscopy and X-ray. Up to appr. 450 K the crystal water free compounds are present. On raising the temperature the constitutional water is totally removed at appr. 650 K, without destroying the Keggin structure thereby. This is conducted from the fact that the initial compounds with the complete amount of crystal water are restorted by rehydration of the “anhydrides” in a water saturated atmosphere. Complete structural destruction proceeds only above 670 K. Highest thermal stability is achieved for the compound with n equalling 1. With decreasing concentration stability of the compounds supported on SiO2 is strongly reduced. In contrast water vapour reacting with the products of total destruction, effects a partial reconstruction.  相似文献   

2.
The compounds (NMe4)5[As2Mo8V4AsO40] · 3 H2O 2a , (NH4)21[H3Mo57V6(NO)6O183(H2O)18] · 65 H2O 3a , (NH2Me2)18(NH4)6[Mo57V6(NO)6O183(H2O)18] · 14 H2O 3b and (NH4)12[Mo36(NO)4O108(H2O)16] · 33 H2O 4a ( 3a and 4a were not correctly reported in the literature regarding to their composition, structures and the oxidation states of the metal centres) which contain large isolated anionic species, have been prepared (among them 3a, 3b , and 4a in rather high yield) and characterized by complete crystal structure analysis as well as IR/Raman, UV/VIS/NIR, ESR spectroscopy and magnetic susceptibility measurements, redox titrations, bond valence sum calculations, elemental analyses and thermogravimetric studies. Perspectives for polyoxometalate chemistry referring to the synthesis of “extremely” large nanoscaled species are discussed, together with the occurrence of a large transferable {Mo17} building block in the compounds 3a, 3b and 4a which also exists in the corresponding iron compound Na3(NH4)12[H15Mo57Fe6(NO)6O183(H2O)18] · 76 H2O 7a .  相似文献   

3.
An in‐depth spectroscopic EPR investigation of a key intermediate, formally notated as [PVIVVVMo10O40]6? and formed in known electron‐transfer and electron‐transfer/oxygen‐transfer reactions catalyzed by H5PV2Mo10O40, has been carried out. Pulsed EPR spectroscopy have been utilized: specifically, W‐band electron–electron double resonance (ELDOR)‐detected NMR and two‐dimensional (2D) hyperfine sub‐level correlation (HYSCORE) measurements, which resolved 95Mo and 17O hyperfine interactions, and electron–nuclear double resonance (ENDOR), which gave the weak 51V and 31P interactions. In this way, two paramagnetic species related to [PVIVVVMo10O40]6? were identified. The first species (30–35 %) has a vanadyl (VO2+)‐like EPR spectrum and is not situated within the polyoxometalate cluster. Here the VO2+ was suggested to be supported on the Keggin cluster and can be represented as an ion pair, [PVVMo10O39]8?[VIVO2+]. This species originates from the parent H5PV2Mo10O40 in which the vanadium atoms are nearest neighbors and it is suggested that this isomer is more likely to be reactive in electron‐transfer/oxygen‐transfer reaction oxidation reactions. In the second (70–65 %) species, the VIV remains embedded within the polyoxometalate framework and originates from reduction of distal H5PV2Mo10O40 isomers to yield an intact cluster, [PVIVVVMo10O40]6?.  相似文献   

4.
On the Crystal Structures of the Transition‐Metal(II) Dodecahydro‐closo‐Dodecaborate Hydrates Cu(H2O)5.5[B12H12]·2.5 H2O and Zn(H2O)6[B12H12]·6 H2O By neutralization of an aqueous solution of the free acid (H3O)2[B12H12] with basic copper(II) carbonate or zinc carbonate, blue lath‐shaped single crystals of the octahydrate Cu[B12H12]·8 H2O (≡ Cu(H2O)5.5[B12H12]·2.5 H2O) and colourless face‐rich single crystals of the dodecahydrate Zn[B12H12]·12 H2O (≡ Zn(H2O)6[B12H12]·6 H2O) could be isolated after isothermic evaporation. Copper(II) dodecahydro‐closo‐dodecaborate octahydrate crystallizes at room temperature in the monoclinic system with the non‐centrosymmetric space group Pm (Cu(H2O)5.5[B12H12]·2.5 H2O: a = 768.23(5), b = 1434.48(9), c = 777.31(5) pm, β = 90.894(6)°; Z = 2), whereas zinc dodecahydro‐closo‐dodecaborate dodecahydrate crystallizes cubic in the likewise non‐centrosymmetric space group F23 (Zn(H2O)6[B12H12]·6 H2O: a = 1637.43(9) pm; Z = 8). The crystal structure of Cu(H2O)5.5[B12H12]·2.5 H2O can be described as a monoclinic distortion variant of the CsCl‐type arrangement. As characteristic feature the formation of isolated [Cu2(H2O)11]4+ units as a condensate of two corner‐linked Jahn‐Teller distorted [Cu(H2O)6]2+ octahedra via an oxygen atom of crystal water can be considered. Since “zeolitic” water of hydratation is also present, obviously both classical H–Oδ?···H–O and non‐classical B–Hδ?···H–O hydrogen bonds play a significant role for the stabilization of the structure. A direct coordinative influence of the quasi‐icosahedral [B12H12]2? anions on the Cu2+ cations has not been determined. The zinc compound Zn(H2O)6[B12H12]·6 H2O crystallizes in a NaTl‐type related structure. Two crystallographically different [Zn(H2O)6]2+ octahedra are present, which only differ in their relative orientation within the packing of the [B12H12]2? anions. The stabilization of the crystal structure takes place mainly via H–Oδ?···H–O hydrogen bonds, since again the hydrogen atoms of the [B12H12]2? anions have no direct coordinative influence on the Zn2+ cations.  相似文献   

5.
Two Keggin-type phosphododecamolybdate compounds [Cd(2,2′-bpy)3]2[PMoVMoVI 11O40] (1) and [H3PMo12O40]·3(4,4′-bpy)·4H2O (2) (bpy=bipyridine) were prepared by the hydrothermal method for the first time and characterized by elemental analyses, X-ray single-crystal diffraction, ESR spectra, and IR spectra, showing that compound 1 consists of a mixed valence Keggin polyanion [PMoVMoVI 11O40]4− and two isolated coordinated cations [Cd(2,2′-bpy)3]2+, while compound 2 is an intermolecular compound based on organic substrate 4,4′-bpy and heteropoly acid unit H3PMo12O40. Furthermore, both the compounds show strong photoluminescence properties in the solid state at room temperature. The catalytic activities of the two compounds were also determined by the oxidation of benzaldehyde to benzoic acid using H2O2 as oxidant in a liquid–solid triphase system.  相似文献   

6.
The Lanthanum Dodecahydro‐closo‐Dodecaborate Hydrate [La(H2O)9]2[B12H12]3·15 H2O and its Oxonium‐Chloride Derivative [La(H2O)9](H3O)Cl2[B12H12]·H2O By neutralization of an aqueous solution of the free acid (H3O)2[B12H12] with basic La2O3 and after isothermic evaporation colourless, face‐rich single crystals of a water‐rich lanthanum(III) dodecahydro‐closo‐dodecaborate hydrate [La(H2O)9]2[B12H12]3·15 H2O are isolated. The compound crystallizes in the trigonal system with the centrosymmetric space group (a = 1189.95(2), c = 7313.27(9) pm, c/a = 6.146; Z = 6; measuring temperature: 100 K). The crystal structure of [La(H2O)9]2[B12H12]3·15 H2O can be characterized by two of each other independent, one into another posed motives of lattice components. The [B12H12]2− anions (d(B–B) = 177–179 pm; d(B–H) = 105–116 pm) are arranged according to the samarium structure, while the La3+ cations are arranged according to the copper structure. The lanthanum cations are coordinated in first sphere by nine oxygen atoms from water molecules in form of a threecapped trigonal prism (d(La–O) = 251–262 pm). A coordinative influence of the [B12H12]2− anions on La3+ has not been determined. Since “zeolitic” water of hydratation is also present, obviously the classical H–Oδ–···H–O‐hydrogen bonds play a significant role in the stabilization of the crystal structure. During the conversion of an aqueous solution of (H3O)2[B12H12] with lanthanum trichloride an anion‐mixed salt with the composition [La(H2O)9](H3O)Cl2[B12H12]·H2O is obtained. The compound crystallizes in the hexagonal system with the non‐centrosymmetric space group (a = 808.84(3), c = 2064.51(8) pm, c/a = 2.552; Z = 2; measuring temperature: 293 K). The crystal structure can be characterized as a layer‐like structure, in which [B12H12]2− anions and H3O+ cations alternate with layers of [La(H2O)9]3+ cations (d(La–O) = 252–260 pm) and Cl anions along [001]. The [B12H12]2− (d(B–B) = 176–179 pm; d(B–H) = 104–113 pm) and Cl anions exhibit no coordinative influence on La3+. Hydrogen bonds are formed between the H3O+ cations and [B12H12]2− anions, also between the water molecules of [La(H2O)9]3+ and Cl anions, which contribute to the stabilization of the crystal structure.  相似文献   

7.
Concentrated (0.2 M) aqueous solutions of HP-acids, such as H3+x+mPVIV mVV x-mMo12-xO40 and their analogues with an excess VO2+ cation, are oxidized by dioxygen at 343 K and atmospheric pressure through intermediate active complexes (IAC) [Hx+m-1PVIV mVV x-mMo12-xO40 4 -] · [VO2+]y · O2, where m + y ≥ 3. The electron transfer to the coordinated O2 molecule inside AC is the limiting stage at high m. At low m, the formation of IAC becomes the limiting stage that results in a sharp decrease in the oxidation rate. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
On the Compound BaO · Al2O3 · 7 H2O On the basis of investigations using 27Al, 1H NMR, IR and thermoanalytical methods for the compound BaO · Al2O3 · 7 H2O a constitution as Ban[Al2(OH)8]n · 3n H2O with condensed AlO6 groups, sharing edges, is proposed. Relations between the Ba/Al ratio and the constitution of anions of barium aluminate hydrates are discussed.  相似文献   

9.
A new organic donor 3‐amino‐6‐dimethylamino‐2‐methyl‐phenazine was introduced to charge‐transfer complex with polyoxometalate. The complex [C15H17N4]4[Mo8O26] ( 1 ) was synthesized by hydrothermal reaction of neutral red chloride (3‐amino‐6‐dimethylamino‐2‐methyl‐phenazine hydrochloride) and (NH4)6[Mo7O24] · 4H2O and was characterized by EPR, element analysis and single crystal x‐ray diffraction.  相似文献   

10.
The title double salt was obtained from the reaction of Y(NO3)3 and K6[H4Co2Mo10O38]·5H2O at a pH of about 2.0. The [H6CoMo6O24]3? anion is a typical B‐type Anderson‐structure heteropolyanion, and has an inversion center, with Co—O bond lengths in the range 1.907 (4)–1.919 (4) Å and Mo—O bond lengths in the ranges 1.709 (5)–1.721 (5), 1.902 (5)–1.951 (5) and 2.274 (4)–2.312 (4) Å.  相似文献   

11.
Polyol Metal Complexes. XIII. Na2[Be(C4H6O3)2] · 5H2O and Na2[Pb(C4H6O3)2] · 3H2O – Two Homoleptic Bis Polyolato Metallates with Beryllium and with Lead Na2[Be(C4H6O3)2] · 5H2O ( 1 ) and Na2[Pb(C4H6O3)2] · 3H2O ( 2 ) crystallize from concentrated, alkaline aqueous solutions. The polyol anhydroerythritol is deprotonated twice in the mononuclear, homoleptic complex anions. The preference of beryllium for the binding of cis-furanoid diols is shown. In 2 , a stereochemically active lone pair at the central atom is the reason for the construction of low dimensional aggregates from three plumbate and three sodium ions.  相似文献   

12.
Two new organic–inorganic hybrid cobalt-molybdovanadates [Co(phen)3]H2[H2V2Mo6O26] · 7H2O (1) and [Co(2,2′-bipy)3][Na(H2O)7][VMo12O40] (2) have been hydrothermally synthesized and structurally characterized by elemental analyses, IR, UV, XPS spectroscopy, thermogravimetric (TG) analyses, and X-ray single crystal diffraction. The molecular structure of 1 consists of a [V2Mo6(OH)2O24]4? polyoxoanion, a [Co(phen)3]2+, two H+ and seven lattice water molecules. The structure of [V2Mo6(OH)2O24]4? consists of six MoO6 octahedra and two VO4 tetrahedra; six MoO6 octahedra are linked by edge-sharing oxygens forming a {Mo6} ring, and two VO4 tetrahedra cap opposite sides of the {Mo6} ring. The molecular structural unit of 2 is constructed from a typical Keggin-type [VMo12O40]3? polyoxoanion and a [Co(2,2′-bipy)3]2+ cation and a Na+ countercation; Co2+ is coordinated by six nitrogens from three 2,2′-bipyridines forming a distorted octahedron.  相似文献   

13.
Molybdenum(II) Halide Clusters with six Alcoholate Ligands: (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6CH3OH and (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] . The reaction of Na2[Mo6Cl8(OCH3)6] and 2,2,2-crypt yields (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6 CH3OH ( 1 ), which is converted to (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] ( 2 ) by metathesis with phenol. According to single crystal structure determinations ( 1 : P3 1c, a=14.613(3) Å, c=21.036(8) Å; 2 : P3 1c, a=15.624(1) Å, c=19.671(2) Å) the compounds contain anionic clusters [Mo6Cl8i(ORa)6]2? ( 1 : d(Mo—Mo) 2.608(1) Å to 2.611(1) Å, d(Mo—Cl) 2.489(1) Å to 2.503(1) Å, d(Mo—O) 2.046(4) Å; 2 : d(Mo—Mo) 2.602(3) Å to 2.608(3) Å, d(Mo—Cl) 2.471(5) Å to 2.4992(5) Å, d(Mo—O) 2.091(14) Å). Electronic interactions of the halide cluster and the phenolate ligands in [Mo6Cl8(OC6H5)6]2? is investigated by means of UV/VIS spectroscopy and EHMO calculations.  相似文献   

14.
The crystal and molecular structure of the title compound, (C4H12N)2[Mo6O19]·H2O, has been determined from X‐ray diffraction data. The poly­oxo­anion [Mo6O19]2? is built up from six distorted MoO6 octa­hedra sharing common edges and one common vertex at the central O atom, and has crystallographic m3m (Oh) symmetry. The cation has crystallographic 3m symmetry.  相似文献   

15.
New Osooxalatocomplexes of Molybdenum (VI) The preparation of the compounds Cs2[Mo2O5F2(C2O4)] · H2O and Cs2[Mo2O4Cl4(C2O4)] · 2 H2O is reported. The structure of the complex anions, which are containing quadridentated oxalate ligands, is derived from their vibration spectra. The compounds [NR4]2[Mo2O4F4(C2O4)] with R = CH3 and C2H5 are examined for comparison.  相似文献   

16.
The transition metal dihydrogen hypodiphosphate hydrates K2[Co(H2P2O6)2(H2O)2] · H2O ( 1 ), K2[Ni(H2P2O6)2(H2O)2] · H2O ( 2 ), K2[Cu(H2P2O6)2(H2O)2] · H2O ( 3 ) and K2[Zn(H2P2O6)2(H2O)2] · H2O ( 4 ) were synthesized and characterized by single crystal structure determination. The compounds 1 – 4 crystallize isotypic in the monoclinic space group C2/m (no. 12) with two formula units in the unit cell. The crystal structure is built up by [H2P2O6]2– units in an eclipsed conformation, by the corresponding transition metal, potassium cations, and water molecules. The eclipsed conformation of the [H2P2O6]2– has not been previously observed in none of known hypodiphosphates(IV) analyzed via X‐ray diffraction. However, its proposed based on spectroscopic methods. FT‐IR/FIR and FT‐Raman spectra of the crystalline salts were recorded and the thermal behavior of the compounds was investigated.  相似文献   

17.
The crystal structure of the title compound, {(C3H12N2)[Mo3O10]·2H2O}n, is composed of [Mo3O10]2− anionic chains, propane‐1,3‐diammonium cations and solvent water molecules. The [Mo3O10]2− chain is constructed from edge‐sharing MoO6 octahedra. The protonated propane‐1,3‐diamine cations and solvent water molecules are located between the chains and are linked to the O atoms of the inorganic chains by hydrogen bonds.  相似文献   

18.
Synthesis, Crystal Structure, and Thermal Decomposition of Mg(H2O)6[B12H12] · 6 H2O By reaction of an aqueous solution of the free acid (H3O)2[B12H12] with MgCO3 and subsequent isothermic evaporation of the resulting solution to dryness, colourless, bead‐shaped single crystals of the dodecahydrate of magnesium dodecahydro closo‐dodecaborate Mg(H2O)6[B12H12] · 6 H2O (cubic, F4132; a = 1643.21(9) pm, Z = 8) emerge. The crystal structure is best described as a NaTl‐type arrangement in which the centers of gravity of the quasi‐icosahedral [B12H12]2— anions (d(B—B) = 178—180 pm, d(B—H) = 109 pm) occupy the positions of Tl while the Mg2+ cations occupy the Na+ positions. A direct coordinative influence of the [B12H12]2— units at the Mg2+ cations is however not noticeable. The latter are octahedrally coordinated by six water molecules forming isolated hexaaqua complex cations [Mg(H2O)6]2+ (d(Mg—O) = 206 pm, 6×). In addition, six “zeolitic” water molecules are located in the crystal structure for the formation of a strong O—Hδ+···δ—O‐hydrogen bridge‐bonding system. The evidence of weak B—Hδ—···δ+H—O‐hydrogen bonds between water molecules and anionic [B12H12]2— clusters is also considered. Investigations on the dodecahydrate Mg[B12H12] · 12 H2O (≡ Mg(H2O)6[B12H12] · 6 H2O) by DTA/TG measurements showed that its dehydration takes place in two steps within a temperature range of 71 and 76 °C as well as at 202 °C, respectively. Thermal treatment eventually leads to the anhydrous magnesium dodecahydro closo‐dodecaborate Mg[B12H12].  相似文献   

19.
Alkaline Molybdotellurates: Preparation and Crystal Structures of Rb6[TeMo6O24] · 10H2O and Rb6[TeMo6O24] · Te(OH)6 · 6H2O Single crystals of Rb6[TeMo6O24] · 10 H2O and Rb6[TeMo6O24] · Te(OH)6 · 6 H2O, respectively, were grown from aqueous solution. Rb6[TeMo6O24] · 10 H2O possesses the space group P1 . The lattice dimensions are a = 963.40(13), b = 972.56(12), c = 1 056.18(13) pm, α = 97.556(10), β = 113.445(9), γ = 102.075(10)°; Z = 1, 2 860 reflections, 215 parameters refined, Rg = 0.0257. The centrosymmetrical [TeMo6O24]6? anions are stacked parallel to [010]. Rb(2) is coordinated with one exception by water molecules only. Folded chains consisting of [TeMo6O24]6? anions and Rb(2) coordination polyhedra which are linked to pairs represent the prominent structural feature. Rb6[TeMo6O24] · Te(OH)6 · 6 H2O crystallizes monoclinically in the space group C2/c with a = 1 886.4(3), b = 1 000.9(1), c = 2 126.5(3) pm, and β = 115.90(1)°; Z = 4, 3 206 reflections, 240 parameters refined, Rg = 0.0333. It is isostructural in high extent with (NH4)6[TeMo6O24] · Te(OH)6 · 7 H2O. Hydrogen bonds between Te(OH)6 molecules and [TeMo6O24]6? anions establish infinite strands. The [TeMo6O24]6? anions gather around Te(OH)6 providing channel-like voids extending parallel to [001].  相似文献   

20.
The phase and chemical compositions of the precipitates formed in the LiVO3-VOSO4-H2O system at initial pH within 1 ≤ pH ≤ 4 and 90°C were studied. The following phases were prepared: an α phase Li1.4(VO)1.3[H2V10O28] · nH2O and a β phase Li0.6 ? x H1.4 + x [V12O31 ? y/2] · nH2O (0 ≤ x ≤ 0.5, 1.3 ≤ y ≤ 2.0) with a layered structure. Li0.4V2O5 · H2O nanorods with the interlayer distance 10.30 ± 0.08 Å were synthesized at 180°C in an autoclave. The morphology, IR spectra, and main formation processes for these polyvanadates were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号