首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Solidified cholesteric films of α-helical poly(γ-methyl L -glutamate) and poly(γ-benzyl L -glutamate) were prepared by casting from solutions of the lyotropic cholesteric mesophase. Colored films can be prepared in this manner, so the cholesteric structure is retained with a pitch corresponding to a visible wavelength. Their iridescent colors can cover the full range of the visible spectrum, and the colors remain unchanged for years. Although the films are similar in optical properties to those of fluid cholesteric phases, the temperature dependence of the color is quite different. On stretching, the film undergoes a permanent deformation, and the iridescent color is shifted toward the blue. If t0 is the initial film thickness and Δt is the change in thickness after stretching the film, the relative change in pitch, ?ΔP/P0, of the cholesteric structure increases linearly with ?Δt/t0 in the range ?Δt/t0 > 0.10. This reduction of the pitch is attributed to a decrease in the number of pseudonematic layers in the span of one pitch, which may be interpreted in terms of delamination using an angle-ply model of the cholesteric structure.  相似文献   

2.
The phase of a liquid crystal (LC) changing from a nematic phase to a cholesteric (Ch) mesophase is achieved by adding different ratios of chiral dopants S811. By studying the transmission spectrum, we are able to measure the helical pitch in cholesteric phase. The pitch in the mixtures of nematic E7 and chiral dopants S811 as a function of the concentration of the dopant and temperature is investigated. The sensitivity of the selective reflection notch of the cholesteric phase to the thermal tuning depends strongly on the ratios of the chiral dopants. It reveals that the influence of temperature is more profound for those cholesteric liquid crystals (CLCs) which exhibit smectic A (SmA) at lower temperatures. When fitted using Keating's formula, the helical pitch calculated from our experimental results lies on the predicted curve. Optimised ratios of the mixture CLCs for the optimised reflection band with the specified wavelength ranging from 467 nm to 2123 nm are suggested.  相似文献   

3.
本工作以H(?)ppler流变粘度计、退偏振光法及小角激光光散射法研究了聚对苯撑对苯二甲酰胺的浓硫酸溶液在不同浓度和温度下的粘性行为、光学性质和区域结构的变化,发现聚对苯撑对苯二甲酰胺的各向异性溶液在不同温度下呈现向列型液晶和胆甾型液晶特征,说明芳香聚酰胺的液晶体系与小分子液晶相类似,也具有多种中介相的转变现象。这里的中介相转变是由向列型转变为胆甾型,但不是直接的同时是一个单变性的相转变过程。  相似文献   

4.
A series of cyclosiloxane-based cholesteric liquid crystalline (LC) polymers were synthesized from a cholesteric LC monomer cholest-5-en-3-yl(3β) 4-(2-propenyloxy)benzoate and a nematic LC monomer butyl 4-[4-(2-propenyloxy)benzoxy]benzoate. All the polymers exhibit thermotropic LC properties and show cholesteric phases. Most of the polymers display four types of phase transition behaviour corresponding to glass transition, melting point, cholesteric phase-blue phase transition and clearing point. The mesophase temperature range of the blue phases are as broad as 20°C. The blue phase was confirmed by the apperance of planar textures and cubic packings. With an increase of non-chiral component in the polymers, the clearing point decreases slightly, while the glass transition and melting temperatures change little. In the reflection spectra of the polymer series the reflected wavelength broadens and shifts to longer wavelength with increase of the non-chiral component in the polymer systems, suggesting that the helical pitch P lengthens.  相似文献   

5.
For the thermotropic cholesteric mesophase of tri-o-(β-methoxyethoxy)ethyl cellulose (DP = 11), cholesteric pitches larger than 2 μm were precisely determined by microscopic observation and their temperature dependence was examined in the temperature range from 80°C to 140°C. In the initial temperature region of 80°C to 106°C, the pitch increases with increasing temperature. After the pitch diverges at 106°C, it decreases as temperature is raised further. This anomalous temperature dependence of pitch was associated with a thermally-induced inversion from right- to left-handed helicoidal structure which was first observed in this kind of cellulose derivatives.  相似文献   

6.
The aqueous, lyotropic liquid-crystalline phase behavior of the alpha-helical polypeptide, poly(N(epsilon)-2-[2-(2-methoxyethoxy)ethoxy]acetyl-lysine) (1), has been studied using optical microscopy and X-ray scattering. Solutions of optically pure 1 were found to form cholesteric liquid crystals at volume fractions that decreased with increasing average chain length. At very high volume fractions, the formation of a hexagonal mesophase was observed. The pitch of the cholesteric phase could be varied by a mixture of enantiomeric samples L-1 and D-1, where the pitch increased as the mixture approached equimolar. The cholesteric phases could be untwisted, using either magnetic field or shear flow, into nematic phases, which relaxed into cholesterics upon removal of field or shear. We have found that the phase diagram of 1 in aqueous solution parallels that of poly(gamma-benzyl glutamate) in organic solvents, thus providing a useful system for liquid-crystal applications requiring water as solvent.  相似文献   

7.
Chiral side-chain liquid-crystalline (LC) polysiloxanes containing isosorbide groups were graft copolymerised with poly(methylhydrogeno)siloxane, a chiral LC monomer 6-(4-methoxy-benzoyloxy)-hexahydro-furo[3,2-b]furan-3-yl 4'-(4-undec-10-enoyloxy-benzoyloxy)-biphenyl-4-yl adipate and a nematic LC monomer 4'-(4-methoxy-benzoyloxy)-biphenyl-4-yl 4-(2-undec-10-enoyloxy-ethoxy)-benzoate. The chemical structures and LC properties of the monomers and polymers were characterised by use of various experimental techniques including Fourier transform infrared spectroscopy (FTIR), 1H-nuclear magnetic resonance (NMR), element analyses (EA), differential scanning calorimetry (DSC), polarised optical microscopy (POM) and X-ray diffraction (XRD). All the chiral LC polymers showed LC properties with very wide mesophase temperature ranges and the chiral component in the LC polymer systems lead to the appearance of a cholesteric phase. The polymers bearing most chiral LC monomer component showed smectic phases by reason of regular structures in the polymer systems. With the increase of another nematic LC monomer in the polymers, the regular polymer structures were destroyed because of different chemical structures between the two kinds of LC monomers, leading to the disappearance of the smectic arrangement.  相似文献   

8.
The recording of polarization gratings in films of a cholesteric liquid crystalline polymer with different helix pitch was studied in detail. For this purpose, the cholesteric mixture of the nematic azobenzene‐containing copolymer with a chiral‐photochromic dopant was prepared. The utilization of such mixture has made possible to realize dual optical photorecording in one system, first due to the phototuning of the helix pitch by UV light and second the polarization grating recording process by exposure with polarized visible light. The diffraction efficiency strongly depends on the cholesteric helix pitch and films thickness: the increase of the confinement ratio d/p (where d, film thickness; p, helix pitch) results in growth of the diffraction efficiency. Comparison of the induction of polarization gratings in cholesteric, nematic (copolymer without chiral dopant), and amorphous (nonannealed) cholesteric films revealed that only the cholesteric films were characterized by significant oscillations in the diffraction efficiency signal as well as by the presence of the maximum in the first‐order diffraction efficiency in the initial stage of the grating recording process. It was found that in addition to the polarization grating surface relief gratings (SRGs) were also formed in the studied systems, however, the amplitude of the SRG inscribed in the cholesteric films was lower (~20 nm) compared to the grating amplitude obtained in nematic films (~60 nm). Moreover, increasing helix pitch resulted in a decrease of the SRG amplitude. The obtained experimental data demonstrate the great potential of cholesteric LC mixtures of such type for different applications as photoactive materials for photonics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 773–781  相似文献   

9.
The pitch of weakly cholesteric mesophases obtained by dissolving a chiral compound in the nematic liquid crystal MBBA, has been determined by an EPR spin probe technique. The measured values are in excellent agreement with those obtained by the Grandjean-Cano microscopic method. Once a sufficiently large number of EPR simulated spectra have been computed, the experimental procedure for the determination of the pitch is shown to be faster and as reliable as other methods. The handedness of the mesophase can also be easily established by observing the spectral variations which follow the addition of a cholesteric of known handedness to a given sample.  相似文献   

10.
A new type of polymer–liquid crystal composite with photovariable dichroism and birefringence is described. Porous stretched polyethylene films were used as polymer matrices. To induce a cholesteric phase in a commercial nematic host, a chiral photochromic dopant based on sorbide and cinnamic acid capable of E–Z isomerization under UV irradiation was used. A merocianine‐type substance was selected as a dichroic dye. Introduction of a dye‐doped cholesteric mixture with a helical pitch higher than ~300 nm to polymer film led to an almost complete transition from a cholesteric to an oriented nematic phase, as well as to an increase in birefringence and the appearance of dichroism. Decrease of the helical pitch by increasing in the chiral dopant concentration in the liquid crystal–polymer composite results in a reduction of the dichroism values. UV irradiation of polymer composite leading to an isomerization of the chiral dopant and helix untwisting induces a noticeable gradual growth of dichroism and birefringence. These new composites can be considered as promising materials for optical applications.  相似文献   

11.
A new type of polymer-liquid crystal composite with photovariable dichroism and birefringence is described. Porous stretched polyethylene films were used as polymer matrices. To induce a cholesteric phase in a commercial nematic host, a chiral photochromic dopant based on sorbide and cinnamic acid capable of E-Z isomerization under UV irradiation was used. A merocianine-type substance was selected as a dichroic dye. Introduction of a dye-doped cholesteric mixture with a helical pitch higher than ∼300 nm to polymer film led to an almost complete transition from a cholesteric to an oriented nematic phase, as well as to an increase in birefringence and the appearance of dichroism. Decrease of the helical pitch by increasing in the chiral dopant concentration in the liquid crystal-polymer composite results in a reduction of the dichroism values. UV irradiation of polymer composite leading to an isomerization of the chiral dopant and helix untwisting induces a noticeable gradual growth of dichroism and birefringence. These new composites can be considered as promising materials for optical applications.  相似文献   

12.
Low-molecular-weight 4′-acetoxyphenyl-4-acetoxyoinnamate, as well as several polyesters synthesized from this monomer and aliphatic dibasic acids, exhibit thermotropic nematic phases. DSC heating curves for all of the polymers exhibit multiple transitions. The amount of crystallinity of these polymers at room temperature is small and the degree of order along the chain axis in the crystalline phase is poor. For the lower homologues the nematic phase exists over a broad temperature range of approximately 100°C. The polyester from chiral (+)-3-methyl adipate forms a thermotropic cholesteric phase. Both the diacetoxy monomer and azelate polymers of low molecular weight adopt the homeotropic texture on glass slides, but with increasing molecular weight the planar texture becomes preferred. Investigation of the effects of electric fields in the conduction regime upon the nematic phase of the diacetoxy monomer revealed that Williams domains are formed only with difficulty. In most cases, a stationary pattern appeared instead. At higher voltage the dynamic scattering mode (DSM) was obtained, and above this a field-induced transition to the isotropic phase. The azelate polyesters exhibited Williams domains and the DSM in the conduction regime. The formation time for Williams domains was fairly short for polymers having ηinh < 0.44 dL/g, but increased to 80 min when ηinh = 0.68 dL/g. The DSM was only observed for polymers having ηinh < 0.61 dL/g. For these polymers the critical frequency separating the conduction and dielectric regimes exhibits a stronger temperature dependence than that of low-molecular-weight nematogens. A new instability pattern is reported for the azelate polyesters in the dielectric regime.  相似文献   

13.
Acetoacetoxypropyl cellulose, formed by the acetoacetylation of hydroxypropyl cellulose using a diketene/acetone adduct at elevated temperature, forms both thermotropic and lyotropic liquid-crystalline phases. DSC and hot-stage polarized light microscopy confirmed the thermotropic nature of the bulk polymer. Thin layers showed green reflection colors at room temperature. The wavelength λ0 of selective reflection was measured spectrophotometrically. The crystalline structure of the polymer was investigated using x-ray diffraction. A lyotropic mesophase formed in acetic acid at ≥ 40 wt% polymer. The value of λ0 for the lyotropic cholesteric mesophase was determined by optical rotatory dispersion (ORD) and circular dichroism (CD) of a thin layer of a wholly anisotropic solution.  相似文献   

14.
Addition of a chiralic eight-membered ring derivative of 1, 1′-dinaphthyl (I) to a nematic mesophase produces an optical rotatory power Φ which exceeds the optical rotation of the solute I by a factor of several orders of magnitude. The temperature dependence Φ (T) as well as other optical properties are characteristic of cholesteric liquid crystals. From this, evidence has been derived that non-mesomorphic chiral molecules transform a nematic into a cholesteric mesophase. The screw-sense of the helical arrangement depends on the chirality of the molecules added.  相似文献   

15.
The phenomenon of a reversible helix inversion in induced cholesteric mesophases caused by variation of the temperature has been investigated by E.S.R. spectroscopy using the nitroxide radical tempone as spin probe. Chiral esters of optically active (R)-(+)-2,2'-dihydroxy-1,1'-binaphthyl were added as dopants to the nematic mixture RO-TN 404. The inversion temperatures and the handedness of the helices were determined. In addition to the distortion parameter which is a measure of the helix pitch, order parameters and rotational correlation times of the spin probe were obtained from line-shape analyses.  相似文献   

16.
A homologous series of polyesters was prepared from 4,4′-dihydroxybiphenyl and dibasic acids having 5-12 methylene units. The mesophases formed at elevated temperatures were studied by differential scanning calorimetry and polarized light microscopy. This family exhibits an unusual odd-even effect when the transition temperatures are plotted as a function of the number of methylene units in the dibasic acid. Not only do the points for odd and even members fall on different curves, but the odd members exhibit a nematic phase over a very short temperature interval, while the even members form a highly ordered smectic phase. For both the odd and even series, the transition temperatures are significantly depressed when the inherent viscosity falls below 0.2 dL/g. The largest depression occurs for the crystal melting transition, so that polymers of low ηinh show anisotropic and biphasic regions over wider temperature ranges. A copolymer formed from an equimolar mixture of sebacic and chiral (+)-3-methyl adipic acid forms a cholesteric phase. Evidently copolymerization destabilizes the smectic phase which would have been expected. The results are discussed in terms of existing theory.  相似文献   

17.
This paper studies the thermal relaxation phenomena after melt‐extrusion of a rigid discotic uniaxial nematic mesophase pitch using mathematical modelling and computer simulation. The Ericksen and Landau–de Gennes continuum theories are used to investigate the structure development and texture formation across mesophase pitch‐based carbon fibres. The two‐dimensional model captures five types of transverse patterns, which match the commonly observed textures for mesophase pitch‐based carbon fibres. They are: random, zig‐zagged radial, radial, quasi‐onion and onion. These textures represent the various combinations possible from the interplay between structure (i.e. texture) development and cooling during the fibre spinning process. During the thermal relaxation after the cessation of extensional flow the discotic nematic molecules store elastic free energy decays. The distorted nematic molecular profiles reorient to release the stored elastic free energy. The difference in time scales for molecular reorientation and thermal relaxation result in different transverse textures. The rate at which the fibres are cooled is the main factor in controlling the structure development. A slow cooling rate would permit the nematic discotic molecules to reorient to a well‐developed (radial or onion) texture. The random texture is a result of rapid quenching. The numerical results are consistent with published experimental observations.  相似文献   

18.
The optical microscopic mass transport (OMMT) method was utilized to determine the cholesteric pitch values of the mixtures of mesogenic and non-mesogenic chiral species in nematic materials. The cholesteric pitch was determined by transient analysis of the diffusion profile established by allowing an initial cholestric composition (solute) to diffuse under semi-infinite linear boundary conditions into an oriented thin film of its corresponding nematic solvent. During the steady-state diffusion, where the initial concentration (pitch) remains constant, the transient analysis of the profile with a polarization microscope exhibits a maximum number of pitch discontinuity domains. The evaluation of the unknown pitch was carried out by extrapolation of the diffusion pitch gradient to the original diffusion source by using the exact relation between the pitch and the film thickness. The method is experimentally simple; at constant temperature and pressure, determination of the pitch depends only on the film thickness. There is a good agreement between the pitch values obtained with this method and those from conventional techniques.  相似文献   

19.
Textures and defects in ethyl-cyanoethyl cellulose [(E-CE)C]/dichloroacetic acid (DCA) cholesteric liquid crystalline solutions and in (E-CE)C/polyacrylic acid (PAA) composites were observed and studied by polarizing microscopy and electron microscopy. The existence of χ, λ and τ disclinations were observed in the mesophase with disk-like and band-like textures. Pairs of disclinations with different signs were also found in the mesophase with the band-like texture. Domain walls were observed in (E-CE)C/PAA composite films with cholesteric order by TEM. The orientation of polymer chains in the vicinity of the core of the disclinations is discussed.  相似文献   

20.
The kinetics of mesophase formation of a thermotropic hydroxyethyl cellulose acetatefrom isotropic phase to cholesteric mesophase has been studied by means of depolariz-ing transmittance method. Avrami type analysis of the data gives an exponent n close to1, which suggests the nucleation followed by rod-like growth. It means that the kineticbehavior of phase transition from isotropic to cholesteric mesophase is very similar to thatof the mesophase formation from isotropic to nematic mesophase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号