首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A general method for the oxidative substitution of nido‐carborane (7,8‐C2B9H12?) with N‐heterocycles has been developed by using 2,3‐dichloro‐5,6‐dicyanobenzoquinone (DDQ) as an oxidant. This metal‐free B?N coupling strategy, in both inter‐ and intramolecular fashions, gave rise to a wide array of charge‐compensated, boron‐substituted nido‐carboranes in high yields (up to 97 %) with excellent functional‐group tolerance under mild reaction conditions. The reaction mechanism was investigated by density‐functional theory (DFT) calculations. A successive single‐electron transfer (SET), B?H hydrogen‐atom transfer (HAT), and nucleophilic attack pathway is proposed. This method provides a new approach to nitrogen‐containing carboranes with potential applications in medicine and materials.  相似文献   

2.
The structures and second‐order nonlinear optical (NLO) properties of a series of chlorobenzyl‐o‐carboranes derivatives ( 1 – 12 ) containing different push‐pull groups have been studied by density functional theory (DFT) calculation. Our theoretical calculations show that the static first hyperpolarizability (βtot) values gradually increase with increasing the π‐conjugation length and the strength of electron donor group. Especially, compound 12 exhibits the largest βtot (62.404×10?30 esu) by introducing tetrathiafulvalene (TTF), which is about 76 times larger than that of compound 1 containing aryl. This means that the appropriate structural modification can substantially increase the first hyperpolarizabilities of the studied compounds. For the sake of understanding the origin of these large NLO responses, the frontier molecular orbitals (FMOs), electron density difference maps (EDDMs), orbital energy and electronic transition energy of the studied compounds are analyzed. According to the two‐state model, the lower transition energy plays an important role in increasing the first hyperpolarizability values. This study may evoke possible ways to design preferable NLO materials.  相似文献   

3.
Two phenyl‐substituted carboranes, 3‐phenyl‐1,2‐dicarba‐closo‐dodecaborane(12), C8H16B10, (I), and 1‐phenyl‐1,7‐dicarba‐closo‐dodecaborane(12), C8H16B10, (II), were found to be isostructural. Comparison of the bond angles at the ipso‐C atoms of the phenyl substituent for (I) and (II) [117.71 (3) and 118.45 (10)°, respectively] indicates that electron donation of the carborane cage for B‐ and C‐substituted carboranes is different.  相似文献   

4.
A method for the catalytic generation of functionalized aryl alkali metals is reported. These highly reactive intermediates are liberated from silyl‐protected aryl‐substituted diazenes by the action of Lewis basic alkali metal silanolates, resulting in desilylation and loss of N2. Catalytic quantities of these Lewis bases initiate the transfer of the aryl nucleophile from the diazene to carbonyl and carboxyl compounds with superb functional‐group tolerance. The aryl alkali metal can be decorated with electrophilic substituents such as methoxycarbonyl or cyano as well as halogen groups. The synthesis of a previously unknown cyclophane‐like [4]arene macrocycle from a 1,3‐bisdiazene combined with a 1,4‐dialdehyde underlines the potential of the approach.  相似文献   

5.
A nickel‐catalyzed arylation at the carbon center of o‐carborane cages has been developed, thus leading to the preparation of a series of 1‐aryl‐o‐carboranes and 1,2‐diaryl‐o‐carboranes in high yields upon isolation. This method represents the first example of transition metal catalyzed C,C′‐diarylation by cross‐coupling reactions of o‐carboranyl with aryl iodides.  相似文献   

6.
《化学:亚洲杂志》2017,12(16):2134-2138
Aryl‐substituted o ‐carboranes have shown highly efficient solid‐state emission in previous studies. To demonstrate color tuning of the solid‐state emission in an aryl‐o ‐carborane‐based system, bis‐o ‐carborane‐substituted oligoacenes were synthesized and their properties were systematically investigated. Optical and electrochemical measurements revealed efficient decreases in energy band gaps and lowest unoccupied molecular orbital (LUMO) levels by adding a number of fused benzene rings for the extension of π‐conjugation. As a consequence, bright solid‐state emission was observed in the region from blue to near infrared (NIR). Furthermore, various useful features were obtained from the modified o ‐carboranes as an optical material. The naphthalene derivatives exhibited aggregation‐induced emission (AIE) and almost 100 % quantum efficiency in the crystalline state. Furthermore, it was shown that the tetracene derivative with NIR‐emissive properties had high durability toward photo‐bleaching under UV irradiation.  相似文献   

7.
Seven derivatives of 1,2‐dicarbadodecaborane (ortho‐carborane, 1,2‐C2B10H12) with a 1,3‐diethyl‐ or 1,3‐diphenyl‐1,3,2‐benzodiazaborolyl group on one cage carbon atom were synthesized and structurally characterized. Six of these compounds showed remarkable low‐energy fluorescence emissions with large Stokes shifts of 15100–20260 cm?1 and quantum yields (ΦF) of up to 65 % in the solid state. The low‐energy fluorescence emission, which was assigned to a charge‐transfer (CT) transition between the cage and the heterocyclic unit, depended on the orientation (torsion angle, ψ) of the diazaborolyl group with respect to the cage C? C bond. In cyclohexane, two compounds exhibited very weak dual fluorescence emissions with Stokes shifts of 15660–18090 cm?1 for the CT bands and 1960–5540 cm?1 for the high‐energy bands, which were assigned to local transitions within the benzodiazaborole units (local excitation, LE), whereas four compounds showed only CT bands with ΦF values between 8–32 %. Two distinct excited singlet‐state (S1) geometries, denoted S1(LE) and S1(CT), were observed computationally for the benzodiazaborolyl‐ortho‐carboranes, the population of which depended on their orientation (ψ). TD‐DFT calculations on these excited state geometries were in accord with their CT and LE emissions. These C‐diazaborolyl‐ortho‐carboranes were viewed as donor–acceptor systems with the diazaborolyl group as the donor and the ortho‐carboranyl group as the acceptor.  相似文献   

8.
A visible‐light‐mediated in situ generation of a boron‐centered carboranyl radical (o‐C2B10H11 . ) has been described. With eosin Y as a photoredox catalyst, 3‐diazonium‐o‐carborane tetrafluoroborate [3‐N2o‐C2B10H11][BF4] was converted into the corresponding boron‐centered carboranyl radical intermediate, which can undergo efficient electrophilic substitution reaction with a wide range of (hetero)arenes. This general and simple procedure provides a metal‐free alternative for the synthesis of 3‐(hetero)arylated‐o‐carboranes.  相似文献   

9.
Summary: Pulse field gradient‐NMR (PFG‐NMR) spectroscopy is determined to be a more suitable method for the investigation of self‐association processes in multi‐component (co)polymer systems than light scattering methods. Here the co‐micellization of mixtures of the diblock copolymer polystyrene‐block‐(hydrogenated polyisoprene) (PS‐HPI) and the triblock copolymer polystyrene‐block‐(hydrogenated polybutadiene)‐block‐polystyrene (PS‐HPB‐PS) in decane is investigated by PFG‐NMR spectroscopy and the results compared to those experimentally determined by static (SLS) and dynamic (DLS) light scattering. As expected, diffusion coefficients determined by PFG‐NMR spectroscopy are systematically lower than those from DLS. The PFG‐NMR measurements provided higher values of cequation/tex2gif-stack-1.gif(X)/ctot than the model calculations, illustrating that the basic assumption used in the calculations, i.e., that the number concentration of co‐micelles in mixed solutions follows the dilution with a triblock copolymer solution, 1 − X, is not fully valid at high X (weight fraction of PS‐HPB) values.

Comparison of PFG‐NMR spectroscopy and SLS (cequation/tex2gif-stack-2.gif/ctot = equilibrium concentration of free PS‐HPB‐PS over the total concentration of copolymers in solution, X = weight fraction of PS‐HPB).  相似文献   


10.
An unusual 12‐vertex‐closo‐C2B10/12‐vertex‐nido‐C2B10 biscarborane cluster was synthesized through an unprecedented regioselective metal‐free B?H activation by a sterically hindered PIII center under mild conditions accompanied by cage‐opening rearrangement. A combination of the electron‐accepting properties of a carborane cage and steric enforcement of close interatomic contacts represent a new synthetic strategy for the activation of strong B?H bonds in carboranes.  相似文献   

11.
Monomers derived from 3,4‐ethylenedioxythiophene and phenylenes with branched or oligomeric ether dialkoxy substituents were prepared with the Negishi coupling technique. Electrooxidative polymerization led to the corresponding dialkoxy‐substituted 3,4‐ethylenedioxythiophene–phenylene polymers, with extremely low oxidation potentials (E1/2,p = ?0.16 to ?0.50 V vs Ag/Ag+) due to the highly electron‐rich nature of these materials. The polymers were electrochromic, reversibly switching from red to blue upon oxidation, with bandgaps at about 2 eV. The electrochemical behavior of the oligomeric ether‐substituted polymer was investigated in the presence of different metal ions. Films of the polymer exhibited electrochemical recognition for several alkali and alkaline‐earth cations with selectivity in the order Li+ > Ba2+ > Na+ > Mg2+. Cyclic voltammetry showed a decrease in the oxidation potential and an improvement in the definition of the voltammetric response, as well as an increase in the overall electroactivity of the polymer films when the concentration of the cations in the medium was increased. These results are discussed in terms of the electrostatic interactions between the complexed cation and the redox center, as well as the diffusion of the ionic species into the polymer matrix. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2164–2178, 2001  相似文献   

12.
Dye‐sensitized solar cells (DSCs) have great potential to provide sustainable electricity from sunlight. The photoanode in DSCs consists of a dye‐sensitized metal oxide film deposited on a conductive substrate. This configuration makes the photoanode a perfect sample for laser desorption/ionization mass spectrometry (LDI‐MS). We applied LDI‐MS for the study of molecular interactions between a dye and electrolyte on the surface of a TiO2 photoanode. We found that a dye containing polyoxyethylene groups forms complexes with alkali metal cations from the electrolyte, while a dye substituted with alkoxy groups does not. Guanidinium ion forms adducts with neither of the two dyes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Novel conjugated, pyridyl‐functionalised triazaphospholes with either tBu or SiMe3 substituents at the 5‐position of the N3PC heterocycle have been prepared by a [3+2] cycloaddition reaction and compared with structurally related, triazole‐based systems. Photoexcitation of the 2‐pyridyl‐substituted triazaphosphole gives rise to a significant fluorescence emission with a quantum yield of up to 12 %. In contrast, the all‐nitrogen triazole analogue shows no emission at all. DFT calculations indicate that the 2‐pyridyl substituted systems have a more rigid and planar structure than their 3‐ and 4‐pyridyl isomers. Time‐dependent (TD) DFT calculations show that only the 2‐pyridyl‐substituted triazaphosphole exhibits similar planar geometry, with matching conformational arrangements in the lowest energy excited state and the ground state; this helps to explain the enhanced emission intensity. The chelating P,N‐hybrid ligand forms a ReI complex of the type [(N^N)Re(CO)3Br] through the coordination of nitrogen atom N2 to the metal centre rather than through the phosphorus donor. Both structural and spectroscopic data indicate substantial π‐accepting character of the triazaphosphole, which is again in contrast to that of the all‐nitrogen‐containing triazoles. The synthesis and photophysical properties of a new class of phosphorus‐containing extended π systems are described.  相似文献   

14.
The electrochemical, UV/Vis–NIR absorption, and emission‐spectroscopic features of (TBA+)( 1 ) and the corresponding neutral complex 1 were investigated (TBA+=tetrabutylammonium; 1 =[AuIII(Pyr,H‐edt)2]; Pyr,H‐edt2−=pyren‐1‐yl‐ethylene‐1,2‐dithiolato). The intense electrochromic NIR absorption (λmax=1432 nm; ε=13000 M −1 cm−1 in CH2Cl2) and the potential‐controlled visible emission in the range 400–500 nm, the energy of which depends on the charge of the complex, were interpreted on the grounds of time‐dependent DFT calculations carried out on the cis and trans isomers of 1 , 1 , and 1 2−. In addition, to evaluate the nonlinear optical properties of 1 x (x=0, 1), first static hyperpolarizability values βtot were calculated (βtot=78×10−30 and 212×10−30 esu for the cis isomer of 1 and 1 , respectively) and compared to those of differently substituted [Au(Ar,H‐edt)2]x gold dithiolenes [Ar=naphth‐2‐yl ( 2 ), phenyl ( 3 ); x=0, 1].  相似文献   

15.
We report a BF3‐mediated direct alkynylation of pyridines at C(2) by using a variety of alkynyllithium reagents (oxidative cross‐coupling). Moreover, we have developed a novel transition‐metal‐free cross‐coupling method between alkylmagnesium reagents and 4‐substituted pyridines, such as isonicotinonitrile and 4‐chloropyridine, by employing BF3?OEt2 as a promoter. The combination of these methods enabled us to efficiently prepare a range of di‐, tri‐, and tetrasubstituted pyridines.  相似文献   

16.
A series of meta‐substituted fatty acid octaester derivatives and their transition‐metal complexes of meso‐ tetraphenyl porphyrins (TPP‐8OOCR, with R=Cn?1H2n?1, n=8, 12, or 16) have been prepared through very simple synthesis protocols. The thermotropic phase behavior and the liquid crystalline (LC) organization structures of the synthesized porphyrin derivatives were systematically investigated by a combination of differential scanning calorimetry (DSC), polarized optical microscopy (POM), and variable‐temperature small‐angle X‐ray scattering/wide‐angle X‐ray scattering (SAXS/WAXS) techniques. The shorter octanoic acid ester substituted porphyrin (C8‐TPP) did not show liquid crystallinity and its metal porphyrins exhibited an uncommon columnar mesophase. The lauric acid octaester (C12‐TPP) and the palmitic acid octaester (C16‐TPP) series porphyrins generated hexagonal columnar mesophase Colh. Moreover, the metal porphyrins C12‐TPPM and C16‐TPPM with M=Zn, Cu, or Ni, exhibited well‐organized Colh mesophases of broad LC temperature ranges increasing in the order of TPPNi<TPPCu≤TPPZn with their increased effective ionic radii in the square‐planar coordination. The simplicity in synthesis, the well intercolumnar organization of Colh mesophase, the broadness of the discotic LC range, and the specific UV/Vis absorption and fluorescence emission behaviors make the symmetrically substituted fatty acid octaester porphyrins and their metal complexes very attractive for variant applications.  相似文献   

17.
Transition‐metal carbides (TMCs) exhibit catalytic activities similar to platinum group metals (PGMs), yet TMCs are orders of magnitude more abundant and less expensive. However, current TMC synthesis methods lead to sintering, support degradation, and surface impurity deposition, ultimately precluding their wide‐scale use as catalysts. A method is presented for the production of metal‐terminated TMC nanoparticles in the 1–4 nm range with tunable size, composition, and crystal phase. Carbon‐supported tungsten carbide (WC) and molybdenum tungsten carbide (MoxW1?xC) nanoparticles are highly active and stable electrocatalysts. Specifically, activities and capacitances about 100‐fold higher than commercial WC and within an order of magnitude of platinum‐based catalysts are achieved for the hydrogen evolution and methanol electrooxidation reactions. This method opens an attractive avenue to replace PGMs in high energy density applications such as fuel cells and electrolyzers.  相似文献   

18.
Mixtures of alkyllithium and heavier alkali‐metal alkoxides are often used to form alkyl compounds of heavier alkali metals, but these mixtures are also known for their high reactivity in deprotonative metalation reactions. These organometallic mixtures are often called LiC–KOR superbases, but despite many efforts their constitution remains unknown. Herein we present mixed alkali‐metal alkyl/alkoxy compounds produced by reaction of neopentyllithium with potassium tert‐butoxide. The key to success was the good solubility and temperature‐stability of neopentyl alkali‐metal compounds, leading to hexane‐soluble mixtures, which allowed handling at ambient temperatures and isolation by crystallization. The compounds in solid state and in solution were identified by X‐ray crystallography and NMR spectroscopy as mixtures of lithium/potassium neopentyl/tert‐butoxy aggregates of varying compositions LixKyNpz(OtBu)x+y?z.  相似文献   

19.
Transition‐metal carbides (TMCs) exhibit catalytic activities similar to platinum group metals (PGMs), yet TMCs are orders of magnitude more abundant and less expensive. However, current TMC synthesis methods lead to sintering, support degradation, and surface impurity deposition, ultimately precluding their wide‐scale use as catalysts. A method is presented for the production of metal‐terminated TMC nanoparticles in the 1–4 nm range with tunable size, composition, and crystal phase. Carbon‐supported tungsten carbide (WC) and molybdenum tungsten carbide (MoxW1−xC) nanoparticles are highly active and stable electrocatalysts. Specifically, activities and capacitances about 100‐fold higher than commercial WC and within an order of magnitude of platinum‐based catalysts are achieved for the hydrogen evolution and methanol electrooxidation reactions. This method opens an attractive avenue to replace PGMs in high energy density applications such as fuel cells and electrolyzers.  相似文献   

20.
ACE was applied to the quantitative evaluation of noncovalent binding interactions between benzo‐18‐crown‐6‐ether (B18C6) and several alkali metal ions, Li+, Na+, K+, Rb+ and Cs+, in a mixed binary solvent system, methanol–water (50/50 v/v). The apparent binding (stability) constants (Kb) of B18C6–alkali metal ion complexes in the hydro‐organic medium above were determined from the dependence of the effective electrophoretic mobility of B18C6 on the concentration of alkali metal ions in the BGE using a nonlinear regression analysis. Before regression analysis, the mobilities measured by ACE at ambient temperature and variable ionic strength of the BGE were corrected by a new procedure to the reference temperature, 25°C, and the constant ionic strength, 10 mM . In the 50% v/v methanol–water solvent system, like in pure methanol, B18C6 formed the strongest complex with potassium ion (log Kb=2.89±0.17), the weakest complex with cesium ion (log Kb=2.04±0.20), and no complexation was observed between B18C6 and the lithium ion. In the mixed methanol–water solvent system, the binding constants of the complexes above were found to be about two orders lower than in methanol and about one order higher than in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号