首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene nanosheets offer intriguing electronic, thermal, and mechanical properties and are expected to find a variety of applications in high‐performance nanocomposite materials. Dispersal of graphene nanosheets in polymer hosts and precise interface control are challenging due to their strong interlayer cohesive energy and surface inertia. Here, an efficient strategy is presented for growing polymers directly from the surface of reduced graphene oxide (GO). This method involves the covalent attachment of Br‐containing initiating groups onto the surface of hydrazine hydrate reduced GO via a diazonium addition and the succeeding linking of poly(tert‐butyl methacrylate) (PtBMA) chains (71.7 wt % grafting efficiency) via surface‐initiated single‐electron‐transfer living radical polymerization (SET‐LRP) to graphene nanosheets. The resulting materials were characterized by using a range of testing techniques and it was proved that polymer chains were successfully introduced to the surface of exfoliated graphene sheets. After grafting with PtBMA, the modified graphene sheets still maintained the separated single layers, and the dispersibility was improved significantly. The method is believed to offer possibilities for optimizing the processing properties and interface structure of graphene–polymer nanocomposites. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

2.
In this study, we report a mild and efficient strategy for growing thermosensitive polymers directly from the surface of exfoliated graphene oxide (GO). Exfoliated GO sheets were sequentially subject to the epoxide ring‐opening reaction with tris(hydroxymethyl) aminomethane (TRIS) to increase the amount of reactive sites, the esterification with 2‐bromo‐2‐methylpropionyl bromide to introduce the Br‐containing initiating groups, and the surface‐initiated single electron transfer–living radical polymerization of N‐isopropylacrylamide (NIPAM) to tune the molecular weights of grafted polymers. All these reactions were performed at ambient temperature without losing any other oxygen‐containing functionality on GO. The resulting TRIS‐GO‐PNIPAM nanocomposites still maintain the separated single layers in dispersion, and the dispersibilities in organic solvents are significantly improved. Meanwhile, the aqueous dispersion of TRIS‐GO‐PNIPAM shows reversible temperature switching self‐assembly and disassembly behavior at about 40°C. Such smart graphene‐based hybrid materials are promising for applications in nanoelectronics, sensors, and microfluidic switches. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
A series of well‐defined double hydrophilic graft copolymers containing poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) backbone and poly[poly(ethylene glycol) ethyl ether methacrylate] (PPEGEEMA) side chains were synthesized by the combination of single electron transfer‐living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained comb copolymer was treated with lithium diisopropylamide and 2‐bromoisobutyryl bromide to give PPEGMEA‐Br macroinitiator. Finally, PPEGMEA‐g‐PPEGEEMA graft copolymers were synthesized by ATRP of poly(ethylene glycol) ethyl ether methacrylate macromonomer using PPEGMEA‐Br macroinitiator via the grafting‐from route. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept narrow (Mw/Mn ≤ 1.20). This kind of double hydrophilic copolymer was found to be stimuli‐responsive to both temperature and ion (0.3 M Cl? and SO). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 647–655, 2010  相似文献   

4.
Graphene nanosheets offer intriguing electronic, thermal and mechanical properties and are expected to find a variety of applications in high‐performance nanocomposite materials. The great challenge of exfoliating and dispersing pristine graphite or graphene sheets in various solvents or matrices can be achieved by facilely and properly chemical functionalization of the carbon nanosheets. Here we reported an efficient way to functionalize graphene sheets with presynthesized polymer via a combination of atom transfer nitroxide radical coupling chemistry with the grafting‐onto strategy, which enable us to functionalize graphene sheets with well‐defined polymer synthesized via living radical polymerization. A radical scavenger species, 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO), was firstly anchored onto ? COOH groups on graphene oxide (GO) to afford TEMPO‐functionalized graphene sheets (GS‐TEMPO), meanwhile, the GO sheets were thermally reduced. Next, GS‐TEMPO reacted with Br‐terminated well‐defined poly(N‐isopropylacrylamide) (PNIPAM) homopolymer, which was presynthesized by SET‐LRP, in the presence of CuBr/N,N,N′,N′,N″‐pentamethyldiethylenetriamine to form PNIPAM‐graphene sheets (GS‐PNIPAM) nanocomposite in which the polymers were covalently linked onto the graphene via the alkoxyamine conjunction points. The PNIPAM‐modified graphene sheets are easily dispersible in organic solvents and water, and a temperature‐induced phase transition was founded in the water suspension of GS‐PNIPAM. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Two polyisobutylene‐grafted graphene nanocomposites were prepared by CuBr‐catalyzed atom transfer nitroxide radical coupling (ATNRC) and Cu‐catalyzed single electron transfer‐nitroxide radical coupling (SET‐NRC) chemistry under mild conditions, respectively, through the grafting‐onto strategy. Graphene oxide was first reduced to graphene by diazonium addition reaction followed by treating graphene with ethyl 2‐bromoisobutyrate for introducing Br‐containing groups onto the surface to give G‐Br. The presynthesized well‐defined functional polyisobutylene (PIB) possessing 2,2,6,6‐tetramethylpiperidine‐1‐oxyl terminal group obtained via cationic polymerization of isobutylene was then coupled with G‐Br through ATNRC or SET‐NRC at room temperature to afford polymer‐modified graphene, G‐PIB. SET‐NRC method has a faster coupling rate using cheaper reagent (Cu wire instead of CuBr) in comparison with ATNRC approach. Detailed characterizations including FT‐IR, Raman, 1H NMR, TGA, AFM, and TEM assured us of successful anchoring of PIB chains onto the surface of graphene sheets. The resulting G‐PIB nanocomposites still maintain the separated single layers in dispersion and the dispersibilities in organic solvents are significantly improved. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4505–4514  相似文献   

6.
pH‐ and temperature‐responsive poly(N‐isopropylacrylamide‐block?4‐vinylbenzoic acid) (poly(NIPAAm‐b‐VBA)) diblock copolymer brushes on silicon wafers have been successfully prepared by combining click reaction, single‐electron transfer‐living radical polymerization (SET‐LRP), and reversible addition‐fragmentation chain‐transfer (RAFT) polymerization. Azide‐terminated poly(NIPAAm) brushes were obtained by SET‐LRP followed by reaction with sodium azide. A click reaction was utilized to exchange the azide end group of a poly(NIPAAm) brushes to form a surface‐immobilized macro‐RAFT agent, which was successfully chain extended via RAFT polymerization to produce poly(NIPAAm‐b‐VBA) brushes. The addition of sacrificial initiator and/or chain‐transfer agent permitted the formation of well‐defined diblock copolymer brushes and free polymer chains in solution. The free polymer chains were isolated and used to estimate the molecular weights and polydispersity index of chains attached to the surface. Ellipsometry, contact angle measurements, grazing angle‐Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy were used to characterize the immobilization of initiator on the silicon wafer, poly(NIPAAm) brush formation via SET‐LRP, click reaction, and poly(NIPAAm‐b‐VBA) brush formation via RAFT polymerization. The poly(NIPAAm‐b‐VBA) brushes demonstrate stimuli‐responsive behavior with respect to pH and temperature. The swollen brush thickness of poly(NIPAAm‐b‐VBA) brush increases with increasing pH, and decreases with increasing temperature. These results can provide guidance for the design of smart materials based on copolymer brushes. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2677–2685  相似文献   

7.
A series of well‐defined double hydrophilic graft copolymers containing poly(poly(ethylene glycol) methyl ether acrylate) (PPEGMEA) backbone and poly(2‐vinylpyridine) (P2VP) side chains were synthesized by successive single electron transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate (PEGMEA) macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained homopolymer then reacted with lithium diisopropylamide and 2‐chloropropionyl chloride at ?78 °C to afford PPEGMEA‐Cl macroinitiator. poly(poly(ethylene glycol) methyl ether acrylate)‐g‐poly(2‐vinylpyridine) double hydrophilic graft copolymers were finally synthesized by. ATRP of 2‐vinylpyridine initiated by PPEGMEA‐Cl macroinitiator at 25 °C using CuCl/hexamethyldiethylenetriamine as catalytic system via the grafting‐ from strategy. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept relatively narrow (Mw/Mn ≤ 1.40). pH‐Responsive micellization behavior was investigated by 1H NMR, dynamic light scattering, and transmission electron microscopy and this kind of double hydrophilic graft copolymer aggregated to form micelles with P2VP‐core while pH of the aqueous solution was above 5.0. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
The single‐electron transfer living radical polymerization (SET‐LRP) of N‐isopropylacrylamide (NIPAM) from silicon wafer modified with an initiator layer composed of 2‐bromopropionyl bromide (2‐BPB) fragments is described. The amount of Cu(0) generated in situ by the disproportination of Cu(I) to Cu(0) and Cu(II) in the presence of 2,2′‐bipyridine (2,2′‐bpy) ligand and N,N‐dimethylformamide (DMF) solvent at 90 °C is dependent on the ratio of [CuBr]/[CuBr2]. By proper selection of the [CuBr]/[CuBr2] ratio, well‐controlled SET‐LRP polymerization of NIPAM was observed such that the thickness of the layer consisting of chains grown from the surface increased linearly with the molecular weight of chains polymerized in solution in identical. In addition, the calculation of grafting parameters, including surface coverage, σ (mg/m2); grafting density, Σ (chain/nm2); and average distance between grafting sites, D (nm), from the number‐average molecular weight, M n (g/mol), and ellipsometric thickness, h (nm), values indicated the synthesis of densely grafted poly(NIPAM) films and allowed us to predict a “brush‐like” conformation. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
Single‐electron transfer living radical polymerization (SET‐LRP) proceeds by an outer‐sphere single‐electron transfer mechanism that induces a heterolytic bond cleavage of the initiating and propagating R‐X (where X = Cl, Br, and I) species. Therefore, unlike the homolytic bond cleavage mechanism claimed for ATRP, SET‐LRP is expected to show a small dependence of the nature of the halide group on the apparent rate constant of activation. This means the R‐X with X = Cl, Br, and I must all be efficient initiators for SET‐LRP and no chain transfer must be observed in the case of initiators with X = Br and I. Here, we report the SET‐LRP of methyl acrylate initiated with the alkyl chlorides methyl‐2‐chloropropionate (MCP) and chloroform (CHCl3) and catalyzed by Cu(0)/Me6‐TREN/CuCl2 in DMSO at 25 °C. A combination of kinetic and structural analysis was used to elucidate the MCP and CHCl3 initiating behavior under SET‐LRP conditions, and to demonstrate the very small dependence of the SET‐LRP apparent rate constant of propagation on X while providing polymers with well defined architecture. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4917–4926, 2008  相似文献   

10.
A series of well‐defined amphiphilic graft copolymers bearing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly[poly(ethylene glycol) methyl ether methacrylate)] (PPEGMEMA) side chains were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and single‐electron‐transfer living radical polymerization (SET‐LRP) without any polymeric functional group transformation. A new Br‐containing acrylate monomer, tert‐butyl 2‐((2‐bromoisobutanoyloxy)methyl)acrylate (tBBIBMA), was first prepared, which can be homopolymerized by RAFT to give a well‐defined PtBBIBMA homopolymer with a narrow molecular weight distribution (Mw/Mn = 1.15). This homopolymer with pendant Br initiation group in every repeating unit initiated SET‐LRP of PEGMEMA at 45 °C using CuBr/dHbpy as catalytic system to afford well‐defined PtBBIBMA‐g‐PPEGMEMA graft copolymers via the grafting‐from strategy. The self‐assembly behavior of the obtained graft copolymers in aqueous media was investigated by fluorescence spectroscopy and TEM. These copolymers were found to be stimuli‐responsive to both temperature and ions. Finally, poly(acrylic acid)‐g‐PPEGMEMA double hydrophilic graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA backbone while PPEGMEMA side chains kept inert. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
A series of ferrocene‐based well‐defined amphiphilic graft copolymers, consisting of hydrophilic poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) backbone and hydrophobic poly(2‐acryloyloxyethyl ferrocenecarboxylate) (PAEFC) side chains were synthesized by successive single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was prepared by SET‐LRP of PEGMEA macromonomer, and it was then treated with lithium di‐isopropylamide and 2‐bromopropionyl bromide at ?78 °C to give PPEGMEA‐Br macroinitiator. The targeted well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.32) were synthesized via ATRP of AEFC initiated by PPEGMEA‐Br macroinitiator, and the molecular weights of the backbone and side chains were both controllable. The electro‐chemical behaviors of graft copolymers were studied by cyclic voltammetry, and it was found that graft copolymers were more difficult to be oxidized, and the reversibility of electrode process became less with raising the content of PAEFC segment. The effects of the preparation method, the length of hydrophobic PAEFC segment, and the initial water content on self‐assembly behavior of PPEGMEA‐g‐PAEFC graft copolymers in aqueous media were investigated by transmission electron microscopy. The morphologies of micelles could transform from cylinders to spheres or rods with changing the preparation condition and the length of side chains. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Thermosensitive graphene‐polymer composites have been prepared by attaching poly(N‐isopropylacrylamide) (PNIPAAm) onto the basal plane of graphene sheets via π‐π stacking. Pyrene‐terminated PNIPAAm was synthesized using reversible addition fragmentation chain transfer (RAFT) polymerization via a pyrene‐functional RAFT agent. Aqueous solutions of the graphene‐polymer composites were stable and thermosensitive. The lower critical solution temperature (LCST) of pyrene‐terminated PNIPAAm was measured to be 33 °C. When the pyrene‐functional polymer was attached to graphene the resultant composites were also thermosensitive in aqueous solutions exhibiting a reversible suspension behavior at 24 °C. Atomic force microscopy (AFM) analysis revealed that the thickness of a graphene‐PNIPAAm (Mn: 10,000 and PDI: 1.1) sheet was ~5.0 nm. The surface coverage of polymer chains on the graphene basal plane was calculated to be 7.2 × 10?11 mol cm?2. The graphene‐PNIPAAm composite material was successfully characterized using X‐ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR‐IR) spectroscopy, and thermogravimetric analysis (TGA). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 425–433, 2010  相似文献   

13.
Graphene‐polymer nanocomposites have significant potential in many applications such as photovoltaic devices, fuel cells, and sensors. Functionalization of graphene is an essential step in the synthesis of uniformly distributed graphene‐polymer nanocomposites, but often results in structural defects in the graphitic sp2 carbon framework. To address this issue, we synthesized graphene oxide (GO) by oxidative exfoliation of graphite and then reduced it into graphene via self‐polymerization of dopamine (DA). The simultaneous reduction of GO into graphene, and polymerization and coating of polydopamine (PDA) on the reduced graphene oxide (RGO) surface were confirmed with XRD, UV–Vis, XPS, Raman, TGA, and FTIR. The degree of reduction of GO increased with increasing DA/GO ratio from 1/4 to 4/1 and/or with increasing temperature from room temperature to 60 °C. A RAFT agent, 2‐(dodecylthiocarbonothioylthio)?2‐methylpropionic acid, was linked onto the surface of the PDA/RGO, with a higher equivalence of RAFT agent in the reaction leading to a higher concentration of RAFT sites on the surface. Graphene‐poly(methyl methacrylate), graphene‐poly(tert‐butyl acrylate), and graphene‐poly(N‐isopropylacrylamide) nanocomposites were synthesized via RAFT polymerization, showing their characteristic solubility in several different solvents. This novel synthetic route was found facile and can be readily used for the rational design of graphene‐polymer nanocomposites, promoting their applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3941–3949  相似文献   

14.
A series of well‐defined double‐hydrophilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐(dimethylamino)ethyl acrylate) (PDMAEA) side chains, were synthesized by the combination of single‐electron‐transfer living radical polymerization (SET‐LRP) and atom‐transfer radical polymerization (ATRP). PNIPAM‐b‐PEA backbone was first prepared by sequential SET‐LRP of N‐isopropylacrylamide and 2‐hydroxyethyl acrylate at 25 °C using CuCl/tris(2‐(dimethylamino)ethyl)amine as catalytic system followed by the transformation into the macroinitiator by treating the pendant hydroxyls with 2‐chloropropionyl chloride. The final graft copolymers with narrow molecular weight distributions were synthesized by ATRP of 2‐(dimethylamino)ethyl acrylate initiated by the macroinitiator at 40 °C using CuCl/tris(2‐(dimethylamino)ethyl)amine as catalytic system via the grafting‐from strategy. These copolymers were employed to prepare stable colloidal gold nanoparticles with controlled size in aqueous solution without any external reducing agent. The morphology and size of the nanoparticles were affected by the length of PDMAEA side chains, pH value, and the feed ratio of the graft copolymer to HAuCl4. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1811–1824, 2009  相似文献   

15.
A well‐defined amphiphilic graft copolymer, consisting of hydrophobic polyallene‐based backbone and hydrophilic poly(N‐isopropylacrylamide) (PNIPAM) side chains, was prepared by the combination of living coordination polymerization, single electron transfer‐living radical polymerization (SET‐LRP), and the grafting‐from strategy. First, the double‐bond‐containing backbone was prepared by [(η3‐allyl)NiOCOCF3]2‐initiated living coordination polymerization of 6‐methyl‐1,2‐heptadiene‐4‐ol (MHDO). Next, the pendant hydroxyls in every repeating unit of poly(6‐methyl‐1,2‐heptadiene‐4‐ol) (PMHDO) homopolymer were treated with 2‐chloropropionyl chloride to give PMHDO‐Cl macroinitiator. Finally, PNIPAM side chains were grown from PMHDO backbone via SET‐LRP of N‐isopropylacrylamide initiated by PMHDO‐Cl macroinitiator in N,N‐dimethylformamide/2‐propanol using copper(I) chloride/tris(2‐(dimethylamino)ethyl)amine as catalytic system to afford PMHDO‐g‐PNIPAM graft copolymers with a narrow molecular weight distribution (Mw/Mn = 1.19). The critical micelle concentration (cmc) in water was determined by fluorescence probe technique and the effects of pH and salinity on the cmc of PMHDO‐g‐PNIPAM were also investigated. The micellar morphology was found to be spheres using transmission electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
Polymers containing o‐nitrobenzyl esters are promising for preparation of light sensitive materials. o‐Nitrobenzyl methacrylate has already been polymerized by controlled ATRP or RAFT. Unfortunately, the radical polymerization of o‐nitrobenzyl acrylate (NBA) was not controlled until now due to inhibition and retardation effects coming from the nitro‐aromatic groups. Recent developments in the Single Electron Transfer–Living Radical Polymerization (SET–LRP) provide us an access to control this NBA polymerization and living character of this NBA SET–LRP is demonstrated. Effects of CuBr2 and ligand concentrations, as well as Cu(0) wire length on SET–LRP kinetics are shown presently. A first‐order kinetics with respect to the NBA concentration is observed after one induction period. SET–LRP proceeds with a linear evolution of molecular weight and a narrow distribution. High initiation efficiency close to 1 and high chain‐end functionality (~93%) are reached. Chain extension of poly(o‐nitrobenzyl acrylate) is realized with methyl acrylate (MA) to obtain well defined poly(o‐nitrobenzyl acrylate)‐b‐poly(methyl acrylate) (PNBA‐b‐PMA). Finally, light‐sensitive properties of PNBA are checked upon UV irradiation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2192–2201  相似文献   

17.
A series of polyallene‐based well‐defined amphiphilic graft copolymers, poly(6‐methyl‐1,2‐heptadiene‐4‐ol)‐g‐poly(2‐(diethylamino)ethyl methacrylate) (PMHDO‐g‐PDEAEMA), was synthesized through the grafting‐from technique. First, double‐bond‐containing PMHDO backbone bearing pendant hydroxyls was prepared via [(η3‐allyl)NiOCOCF3]2‐initiated living coordination polymerization of 6‐methyl‐1,2‐heptadiene‐4‐ol (MHDO). The pendant hydroxyls in the homopolymer were then reacted with 2‐chloropropionyl chloride to give PMHDO‐Cl macroinitiator. Finally, hydrophilic PDEAEMA side chains were formed by single electron transfer‐living radical polymerization (SET‐LRP) of 2‐(diethylamino)ethyl methacrylate (DEAEMA) in THF/H2O initiated by the macroinitiator using CuCl/Me6TREN as catalytic system to afford PMHDO‐g‐PDEAEMA graft copolymers. The narrow molecular weight distributions (Mw/Mn ≤ 1.35) and kinetics experiment showed the controllability of SET‐LRP graft copolymerization of DEAEMA. The critical micelle concentration (cmc) of PMHDO‐g‐PDEAEMA amphiphilic graft copolymer in aqueous media was determined by fluorescence probe technique and the relationships between cmc and pH or salinity were also investigated. Micellar morphologies were preliminarily explored using transmission electron microscopy. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
We demonstrate the living radical polymerization of tert‐butyl acrylate (tBA) applying the SET mechanism, employing methyl 2‐bromopropionate (MBP) as initiator in dimethyl sulfoxide (DMSO) at ambient temperature. It is observed that introducing copper bromide into the catalyst system is necessary for controlling on the SET‐LRP polymerization of tBA. In this work, we make major investigation for the effect of the different stoichiometry quantity of copper bromide on the polymerization. Experiments show that the polymerization achieves better control with increasing the stoichiometry quantity of copper(II) deactivator. The structural analysis of the resulting polymers by 1H NMR demonstrates the successful synthesis of poly(tBA)s by SET‐LRP in DMSO. Moreover, this work is helpful to the SET‐LRP of other monomers and is expected to expand the application of SET‐LRP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2793–2797, 2010  相似文献   

19.
A series of well‐defined amphiphilic graft copolymer containing hydrophobic polyallene‐based backbone and hydrophilic poly(2‐(diethylamino)ethyl acrylate) (PDEAEA) side chains was synthesized by sequential living coordination polymerization of 6‐methyl‐1,2‐heptadiene‐4‐ol (MHDO) and single electron transfer‐living radical polymerization (SET‐LRP) of 2‐(diethylamino)ethyl acrylate (DEAEA). Ni‐catalyzed living coordination polymerization of MHDO was first performed in toluene to give a well‐defined double‐bond‐containing poly(6‐methyl‐1,2‐heptadiene‐4‐ol) (PMHDO) homopolymer with a low polydispersity (Mw/Mn = 1.10). Next, 2‐chloropropionyl chloride was used for the esterification of pendant hydroxyls in every repeating unit of the homopolymer so that the homopolymer was converted to PMHDO‐Cl macroinitiator. Finally, SET‐LRP of DEAEA was initiated by the macroinitiator in tetrahydrofuran/H2O using CuCl/tris(2‐(dimethylamino)ethyl)amine as catalytic system to afford well‐defined PMHDO‐g‐PDEAEA graft copolymers (Mw/Mn ≤ 1.22) through the grafting‐from strategy. The critical micelle concentration (cmc) was determined by ?uorescence spectroscopy with N‐phenyl‐1‐naphthylamine as probe and the micellar morphology was visualized by transmission electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
We herein report a “grafting from” strategy to immobilize optically active helical poly(phenyl isocyanide)s onto graphene oxide (GO) nanosheets. After covalently bounding alkyne‐Pd(II) initiator onto GO nanosheets, the designed GO/polymer composites P1 @GO and P1 ‐b‐ P2 @GO featuring single‐handed helical poly(phenyl isocyanide)s growing from GO nanosheets were prepared by sequential addition of the chiral and achiral isocyanide monomers. Post‐synthetic hydrolysis rendered P1 ‐b‐ P3 @GO to improve the hydrophilicity. The successful covalent bonding of poly(phenyl isocyanide)s chains onto GO nanosheets was certified by several cross evidences including scan emission microscopy, atomic force microscopy, Raman spectroscopy, X‐ray photoelectron spectroscopy, and thermogravimetric analysis. Circular dichroism spectra proved that the chiral information was introduced through the grafted single‐handed helical polymer chains successfully. In addition, the resulting GO/polymer composites were explored as a chiral additive to induce enantioselective crystallization of racemic organic molecules. Preferential formation of rod‐like L‐alanine crystals was induced by composites bearing right‐handed helical poly(phenyl isocyanide)s. The enantiomeric excess value of the induced crystals reached 76%, displaying the potential in future applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2092–2103  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号