首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two novel sulfonate phenol ligands—3,3′‐di‐tert‐butyl‐2′‐hydroxy‐5,5′,6,6′‐tetramethyl‐biphenyl‐2‐yl 4‐X‐benzenesulfonate (X?CF3, LCF3 ‐H, and X?OCH3, LOMe ‐H)—were prepared through the sulfonylation of 3,3′‐di‐tert‐butyl‐5,5′,6,6′‐tetramethylbiphenyl‐2,2′‐diol with the corresponding 4‐substituted benzenesulfonyl chloride (1 equiv.) in the presence of excess triethylamine. Magnesium (Mg) complexes supported by sulfonate phenoxide ligands were synthesized and characterized structurally. The reaction of MgnBu2 with L‐H (2 equiv.) produces the four‐coordinated monomeric complexes ( LCF3 )2Mg ( 1 ) and ( LOMe )2Mg ( 2 ). Complexes 1 and 2 are efficient catalysts for the ring‐opening polymerization of ε‐caprolactone (ε‐CL) and trimethylene carbonate (TMC) in the presence of 9‐anthracenemethanol; complex 1 catalyzes the polymerization of ε‐CL and TMC in a controlled manner, yielding polymers with the expected molecular weights and narrow polydispersity indices (PDIs). In ε‐CL polymerization, the activity of complex 1 is greater than that of complex 2 , likely because of the greater Lewis acidity of Mg2+ metal caused by the electron‐withdrawing substitute trifluoromethyl (? CF3) at the 4‐position of the benzenesulfonate group. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3564–3572, 2010  相似文献   

2.
A novel tridentate anilido‐aldimine ligand, [o‐C6H4(NHAr)? HC?NCH2CH2NMe2] (Ar = 2,6‐iPr2C6H3, L ‐H, 1 ), has been prepared by the condensation of N, N‐dimethylethylenediamine with one molar equivalent of 2‐fluoro‐benzaldehyde in hexane, followed by the addition of the lithium salt of diisopropylaniline in THF. Magnesium (Mg) and zinc (Zn) complexes supported by the tridentate anilido‐aldimine ligand have been synthesized and structurally characterized. Reaction of L ‐H ( 1 ) with an equivalent amount of MgnBu2 or ZnEt2 produces the monomeric complex [ L MgnBu] ( 2 ) or [ L ZnEt] ( 3 ), respectively. Experimental results show that complexes 2 and 3 are efficient catalysts for ring‐opening polymerization of ε‐caprolactone (CL) and L ‐lactide (LA) in the presence of benzyl alcohol and catalyze the polymerization of ε‐CL and L ‐LA in a controlled fashion yielding polymers with a narrow polydispersity index. In both polymerizations, the activity of Mg complex 2 is higher than that of Zn complex 3 , which is probably due to the higher Lewis acidity and better oxophilic nature of Mg2+ metal. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4927–4936, 2009  相似文献   

3.
Two new ring opening polymerization (ROP) initiators, namely, (3‐allyl‐2‐(allyloxy)phenyl)methanol and (3‐allyl‐2‐(prop‐2‐yn‐1‐yloxy)phenyl)methanol each containing two reactive functionalities viz. allyl, allyloxy and allyl, propargyloxy, respectively, were synthesized from 3‐allylsalicyaldehyde as a starting material. Well defined α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy bifunctionalized poly(ε‐caprolactone)s with molecular weights in the range 4200–9500 and 3600–10,900 g/mol and molecular weight distributions in the range 1.16–1.18 and 1.15–1.16, respectively, were synthesized by ROP of ε‐caprolactone employing these initiators. The presence of α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone)s was confirmed by FT‐IR, 1H, 13C NMR spectroscopy, and MALDI‐TOF analysis. The kinetic study of ROP of ε‐caprolactone with both the initiators revealed the pseudo first order kinetics with respect to ε‐caprolactone consumption and controlled behavior of polymerization reactions. The usefulness of α‐allyl, α′‐allyloxy functionalities on poly(ε‐caprolactone) was demonstrated by performing the thiol‐ene reaction with poly(ethylene glycol) thiol to obtain (mPEG)2‐PCL miktoarm star copolymer. α‐Allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone) were utilized in orthogonal reactions i.e copper catalyzed alkyne‐azide click (CuAAC) with azido functionalized poly(N‐isopropylacrylamide) followed by thiol‐ene reaction with poly(ethylene glycol) thiol to synthesize PCL‐PNIPAAm‐mPEG miktoarm star terpolymer. The preliminary characterization of A2B and ABC miktoarm star copolymers was carried out by 1H NMR spectroscopy and gel permeation chromatography (GPC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 844–860  相似文献   

4.
Aluminum complexes coordinated by a C1DEABTP ligand (C1DEABTP‐H = 2‐(2H‐benzotriazol‐2‐yl)‐6‐((diethylamino)methyl)‐4‐methylphenol) were synthesized and structurally characterized. The formation of Al complexes is dependent on the stoichiometry of AlMe3 to C1DEABTP ligand ratio. The reaction of C1DEABTP‐H with AlMe3 (1.0 molar equiv.) in hexane produced mono‐adduct aluminum complex [(C1DEABTP)AlMe2] (1), but treatment of C1DEABTP‐H with 2.0 molar equiv. of AlMe3 afforded mixtures of [(C1DEABTP)Al2Me5] (2) and [(C1DEABTP)Al3Me8] (3). The penta‐coordinated bis‐adduct aluminum complex [(C1DEABTP)2AlMe] (4) was synthesized through the reaction of AlMe3 with C1DEABTP‐H (2.0 molar equiv.) in hexane. Tri‐adduct Al complex [(C1DEABTP)3Al] (5) resulted from treatment of AlMe3 with C1DEABTP‐H (3.0 equiv.); the Al center is hexa‐coordinated with three N,O‐bidentate C1DEABTP ligands. X‐ray diffraction of single crystals indicates that the bonding modes of the C1DEABTP ligands in complexes 2–3 are greatly affected when excess AlMe3 is coordinated. The optical properties and catalysis for lactone polymerizations of C1DEABTP coordinated to Al complexes were tested. Tri‐adduct Al complex 5 produced an intense green fluorescence in both solution and the solid state. Complex 4 is an active catalyst for the ring‐opening polymerization of ε‐caprolactone (ε‐CL) and L‐lactide (L‐LA) in the presence of 9‐anthracenemethanol (9‐AnOH). In ε‐CL polymerization, Al complex 4 catalyzes efficiently in both a 'controlled' and 'immortal' manner, giving polymers with the expected molecular weights and narrow polydispersity indexes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Air‐stable copper catalysts supported by bis‐ BTP ligands ( BTP = N,O‐bidentate benzotriazole phenoxide) were synthesized and structurally characterized. The reactions of Cu(OAc)2·H2O with 2.0 molar equivalents of sterically bulky 2‐(2H‐benzotriazol‐2‐yl)‐4,6‐bis(1‐methyl‐1‐phenylethyl)phenol ( CMe2PhBTP ‐H) and 2‐(2H‐benzotriazol‐2‐yl)‐4,6‐di‐tert‐butylphenol ( t‐BuBTP ‐H) in refluxing ethanol solution afforded monomeric copper complexes [(CMe2PhBTP)2Cu] ( 1 ) and [(t‐BuBTP)2Cu] ( 2 ), respectively. The four‐coordinated copper analogue [(TMClBTP)2Cu] (3 ) resulted from treatment of 2‐tert‐butyl‐6‐(5‐chloro‐2H‐benzotriazol‐2‐yl)‐4‐methylphenol ( TMClBTP ‐H) as the ligand under the same synthetic method with ligand to metal precursor ratio of 2:1, but treatment of complex 3 in acetone gave five‐coordinated monomeric complex [(TMClBTP)2Cu(Me2CO)] (4 ). X‐ray diffraction of single crystals indicates that Cu complex 4 assumes a distorted square pyramidal geometry, penta‐coordinated by two BTP ligands, and one Me2CO molecule. Catalysis for lactide (LA) polymerization of BTP ‐containing Cu complexes in the presence of various alcohol initiators was investigated. Complex 3 initiated by 9‐anthracenemethanol catalyzes the ring‐opening polymerization effectively not only in a “living” fashion but also in an “immortal” manner, yielding polymers with the predictable molecular weights and narrow molecular weight distributions. Initiations from multifunctional alcohols were able to produce PLLAs with two‐arm linear and three‐arm star‐shaped molecular architectures. The controlled character of Cu complex 3 also enabled us to synthesize the PEG‐b‐PLLA copolymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3840–3849  相似文献   

6.
Applications of metal‐free living cationic polymerization of vinyl ethers using HCl · Et2O are reported. Product of poly(vinyl ether)s possessing functional end groups such as hydroxyethyl groups with predicted molecular weights was used as a macroinitiator in activated monomer cationic polymerization of ε‐caprolactone (CL) with HCl · Et2O as a ring‐opening polymerization. This combination method is a metal‐free polymerization using HCl · Et2O. The formation of poly(isobutyl vinyl ether)‐b‐poly(ε‐caprolactone) (PIBVE‐b‐PCL) and poly(tert‐butyl vinyl ether)‐b‐poly(ε‐caprolactone) (PTBVE‐b‐PCL) from two vinyl ethers and CL was successful. Therefore, we synthesized novel amphiphilic, biocompatible, and biodegradable block copolymers comprised polyvinyl alcohol and PCL, namely PVA‐b‐PCL by transformation of acid hydrolysis of tert‐butoxy moiety of PTBVE in PTBVE‐b‐PCL. The synthesized copolymers showed well‐defined structure and narrow molecular weight distribution. The structure of resulting block copolymers was confirmed by 1H NMR, size exclusion chromatography, and differential scanning calorimetry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5169–5179, 2009  相似文献   

7.
The ring‐opening polymerization of ε‐caprolactone (ε‐CL), initiated by carboxylic acids such as benzoic acid and chlorinated acetic acids under microwave irradiation, was investigated; with this method, no metal catalyst was necessary. The product was characterized as poly(ε‐caprolactone) (PCL) by 1H NMR spectroscopy, Fourier transform infrared spectroscopy, ultraviolet spectroscopy, and gel permeation chromatography. The polymerization was significantly improved under microwave irradiation. The weight‐average molecular weight (Mw) of PCL reached 44,800 g/mol, with a polydispersity index [weight‐average molecular weight/number‐average molecular weight (Mw/Mn)] of 1.6, when a mixture of ε‐CL and benzoic acid (25/1 molar ratio) was irradiated at 680 W for 240 min, whereas PCL with Mw = 12,100 and Mw/Mn = 4.2 was obtained from the same mixture by a conventional heating method at 210 °C for 240 min. A degradation of the resultant PCL was observed during microwave polymerization with chlorinated acetic acids as initiators, and this induced a decrease in Mw of PCL. However, the degradation was hindered by benzoic acid at low concentrations. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 13–21, 2003  相似文献   

8.
The synthesis, characterization and ε‐caprolactone polymerization behavior of lanthanide amido complexes stabilized by ferrocene‐containing N‐aryloxo functionalized β‐ketoiminate ligand FcCOCH2C(Me)N(2‐HO‐5‐But‐C6H3) (LH2, Fc = ferrocenyl) are described. The lanthanide amido complexes [LLnN(SiMe3)2(THF)]2 [Ln = Nd ( 1 ), Sm ( 2 ), Yb ( 3 ), Y ( 4 )] were synthesized in good yields by the amine elimination reactions of LH2 with Ln[N(SiMe3)2]3(µ‐Cl)Li(THF)3 in a 1:1 molar ratio in THF. These complexes were characterized by IR spectroscopy and elemental analysis, and 1H NMR spectroscopy was added for the analysis of complex 4 . The definitive molecular structures of complexes 1 and 3 were determined by X‐ray diffraction studies. Complexes 1 – 4 can initiate the ring‐opening polymerization of ε‐caprolactone with moderate activity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The quasi‐living cationic copolymerization of 3,3‐bis(chloromethyl)oxetane (BCMO) and ε‐caprolactone (ε‐CL), using boron trifluoride etherate as catalyst and 1,4‐butanediol as coinitiator, was investigated in methylene chloride at 0°C. The resulting hydroxyl‐ended copolymers exhibit a narrow molecular weight polydispersity and a functionality of about 2. The reactivity ratios of BCMO (0.26) and ε‐CL (0.47), and the Tg of the copolymers, indicate their statistical character. The synthesis of poly(3,3‐bis(azidomethyl)oxetane‐co‐ε‐caprolactone) from poly(BCMO‐co‐ε‐CL) via the substitution of the chlorine atoms by azide groups, using sodium azide in DMSO at 110°C, occurs without any degradation, but the copolymers decompose at about 240°C. All polymers were characterized by vapor pressure osmometry or steric exclusion chromatography, 1H‐NMR and FTIR spectroscopies, and DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1027–1039, 1999  相似文献   

10.
Four bis(pyrazolyl)pyridine Zn(II) and Cu(II) carboxylate complexes have been structurally elucidated and used as initiators in the ring‐opening polymerization (ROP) of ε‐carprolactone (ε‐CL). Reactions of bis(3,5‐dimethyl‐pyrazol‐1‐yl)pyridine ( L1 ) with the appropriate Zn(II) and Cu(II) carboxylates afforded the corresponding complexes; [Zn(L1)(C6H5COO)2] ( 1 ), [Zn(L1)(2‐Cl‐C6H4COO)2] ( 2 ), [Zn(L1)(OAc)2] ( 3 ) and [Cu(L1)(OAc)2] ( 4 ) in moderate to good yields. Molecular structures of compounds 1 , 2 , 3 confirmed the presence of one tridentate bound ligand L1 in the metal coordination sphere and two carboxylate anions to give five coordination number around Zn(II) and Cu(II) atoms. Complexes 1 , 2 , 3 , 4 initiated the ROP of ε‐CL at 110 °C to give polymers of moderate molecular weights. Kinetic analyses of the ROP reactions indicate pseudo ‐first‐order dependency on ε‐CL monomer and initiator. 1H NMR and mass spectral data established a coordination insertion mechanistic pathway and behaviour of 1 , 2 , 3 , 4 as initiators in the ROP of ε‐CL. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Homoleptic lanthanide metallocenes Cp′3Ln [Cp′ = methylcyclopentadienyl, Ln = Y ( 1 ), Er ( 2 ), Sm ( 3 ); Cp′ = cyclopentadienyl, Ln = Er ( 4 ) and Sm ( 5 )] have been found to be a novel type of initiators for the ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL). Among them, complex 1 shows the highest catalytic activity for ROP of ε‐CL. In addition, a novel neutral trifluoroethoxo yttrium complex [(MeC5H4)2Y(µ‐OCH2CF3)]2 ( 6 ) has been synthesized by the reaction of 1 with trifluoroethanol in 1:1 molar ratio in toluene and characterized by single‐crystal X‐ray structural analysis. Preliminary study shows that the catalytic activity of tris(methylcyclopentadienyl)yttrium complex 1 is higher than that of bis(methylcyclopentadienyl)yttrium complex 6 . The mechanism of the present polymerization was studied by NMR spectra. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
We report the coating of maghemite (γ‐Fe2O3) nanoparticles with poly(ε‐caprolactone) (PCL) through a covalent grafting to technique. ω‐Hydroxy‐PCL was first synthesized by the ring‐opening polymerization of ε‐caprolactone with aluminum isopropoxide and benzyl alcohol as a catalytic system. The hydroxy end groups of PCL were then derivatized with 3‐isocyanatopropyltriethoxysilane in the presence of tetraoctyltin. The triethoxysilane‐functionalized PCL macromolecules were finally allowed to react on the surface of maghemite nanoparticles. The composite nanoparticles were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Effects of the polymer molar mass and concentration on the amount of polymer grafted to the surface were investigated. Typical grafting densities up to 3 μmol of polymer chains per m2 of maghemite surface were obtained with this grafting to technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6011–6020, 2004  相似文献   

13.
Zinc catalysts incorporated by imino‐benzotriazole phenolate ( IBTP ) ligands were synthesized and characterized by single‐crystal X‐ray structure determinations. The reaction of the ligand precursor ( C1DMeIBTP ‐H or C1DIPIBTP ‐H) with diethyl zinc (ZnEt2) in a stoichiometric proportion in toluene furnished the di‐nuclear ethyl zinc complexes [(μ‐ C1DMeIBTP )ZnEt]2 ( 1 ) and [(μ‐ C1DIPIBTP )ZnEt]2 ( 2 ). The tetra‐coordinated monomeric zinc complex [( C1PhIBTP )2Zn] ( 3 ) or [( C1BnIBTP )2Zn] ( 4 ) resulted from treatment of C1PhIBTP ‐H or C1BnIBTP ‐H as the pro‐ligand under the similar synthetic method with ligand to metal precursor ratio of 2:1. Single‐crystal X‐ray diffraction of bimetallic complexes 1 and 2 indicates that the C1DMeIBTP or C1DIPIBTP fragment behaves a NON‐tridentate ligand to coordinate two metal atoms. Catalysis for ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL), β‐butyrolactone (β‐BL), and lactide (LA) of complexes 1 and 2 was systematic studied. In combination with 9‐anthracenemethanol (9‐AnOH), Zn complex 1 was found to polymerize ε‐CL, β‐BL, and L‐LA with efficient catalytic activities in a controlled character. This study also compared the reactivity of these ROP monomers with different ring strains by Zn catalyst 1 in the presence of 9‐AnOH. Additionally, Zn complex 1 combining with benzoic acid was demonstrated to be an active catalytic system to copolymerize phthalic anhydride and cyclohexene oxide. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 714–725  相似文献   

14.
A series of di‐ and triblock copolymers [poly(L ‐lactide‐b‐ε‐caprolactone), poly(D,L ‐lactide‐b‐ε‐caprolactone), poly(ε‐caprolactone‐b‐L ‐lactide), and poly(ε‐caprolactone‐b‐L ‐lactide‐b‐ε‐caprolactone)] have been synthesized successfully by sequential ring‐opening polymerization of ε‐caprolactone (ε‐CL) and lactide (LA) either by initiating PCL block growth with living PLA chain end or vice versa using titanium complexes supported by aminodiol ligands as initiators. Poly(trimethylene carbonate‐b‐ε‐caprolactone) was also prepared. A series of random copolymers with different comonomer composition were also synthesized in solution and bulk of ε‐CL and D,L ‐lactide. The chemical composition and microstructure of the copolymers suggest a random distribution with short average sequence length of both the LA and ε‐CL. Transesterification reactions played a key role in the redistribution of monomer sequence and the chain microstructures. Differential scanning calorimetry analysis of the copolymer also evidenced the random structure of the copolymer with a unique Tg. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
Ring‐opening polymerization of ε‐caprolactone (ε‐CL) was carried out using β‐diketiminato‐supported monoaryloxo ytterbium chlorides L1Yb(OAr)Cl(THF) (1) [L1 = N,N′‐bis(2,6‐dimethylphenyl)‐2,4‐pentanediiminato, OAr = 2,6‐di‐tert‐butylphenoxo‐], and L2Yb(OAr′)Cl(THF) (2) [L2 = N,N′‐bis(2,6‐diisopropylphenyl)‐2,4‐pentanediiminato, OAr′ = 2,6‐di‐tert‐butyl‐4‐methylphenoxo‐], respectively, as single‐component initiator. The influence of reaction conditions, such as polymerization temperature, polymerization time, initiator, and initiator concentration, on the monomer conversion, molecular weight, and molecular weight distribution of the resulting polymers was investigated. Complex 1 was well characterized and its crystal structure was determined. Some features and kinetic behaviors of the CL polymerization initiated by these two complexes were studied. The polymerization rate is first order with respect to monomer. The Mn of the polymer increases linearly with the increase of the polymer yield, while polydispersity remained narrow and unchanged throughout the polymerization in a broad range of temperatures from 0 to 50 °C. The results indicated that the present system has a “living character”. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1147–1152, 2006  相似文献   

16.
Magnesium (Mg) and zinc (Zn) complexes incorporating tridentate anilido‐aldimine ligand, (E)‐2, 6‐diisopropyl‐N‐(2‐((2‐(piperidin‐1‐yl)ethylimino)methyl)phenyl)aniline ( AA Pip ‐H, 1 ), were synthesized and structurally characterized. The reaction of AA Pip ‐H ( 1 ) with MgnBu2 or ZnEt2 in equivalent proportions afforded the monomeric complex [( AA Pip )MgnBu] ( 2 ) or [( AA Pip )ZnEt] ( 3 ), respectively. The coordination modes of these complexes differ in the solid state: Mg complex 2 shows a four‐coordinated and distorted tetrahedral geometry, whereas Zn complex 3 adopts a trigonal planar geometry with a three‐coordinated Zn center. Complexes 2 and 3 are efficient catalysts for the ring‐opening polymerization of β‐butyrolactone (β‐BL) in the presence of 9‐anthracenemethanol (9‐AnOH). The polymerization of β‐BL with the Zn catalyst system is demonstrated in a living fashion with a narrow polydispersity index, PDI = 1.01–1.10. The number‐averaged molecular weight (Mn) of the produced poly(3‐hydroxybutyrate) (PHB) is quite close to the expected Mn over diverse molar ratios of monomer to 9‐AnOH. A greater ratio of monomer to alcohol catalyzed by Zn complex 3 served to form PHB with a large molecular weight (Mn > 60000). An effective method to prepare PHB‐b‐PCL and PEG‐b‐PHB by the ring‐opening copolymerization of β‐BL catalyzed by zinc complex 3 is reported. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
A well‐defined comblike copolymer of poly(ethylene oxide‐co‐glycidol) [(poly(EO‐co‐Gly)] as the main chain and poly(ε‐caprolactone) (PCL) as the side chain was successfully prepared by the combination of anionic polymerization and ring‐opening polymerization. The glycidol was protected by ethyl vinyl ether to form 2,3‐epoxypropyl‐1‐ethoxyethyl ether (EPEE) first, and then ethylene oxide was copolymerized with EPEE by an anionic mechanism. The EPEE segments of the copolymer were deprotected by formic acid, and the glycidol segments of the copolymers were recovered after saponification. Poly(EO‐co‐Gly) with multihydroxyls was used further to initiate the ring‐opening polymerization of ε‐caprolactone in the presence of stannous octoate. When the grafted copolymer was mixed with α‐cyclodextrin, crystalline inclusion complexes (ICs) were formed, and the intermediate and final products, poly(ethylene oxide‐co‐glycidol)‐graft‐poly(ε‐caprolactone) and ICs, were characterized with gel permeation chromatography, NMR, differential scanning calorimetry, X‐ray diffraction, and thermogravimetric analysis in detail. The obtained ICs had a channel‐type crystalline structure, and the ratio of ε‐caprolactone units to α‐cyclodextrin for the ICs was higher than 1:1. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3684–3691, 2006  相似文献   

18.
In this work, ring opening insertion polymerization (ROIP) of ε‐caprolactone (ε‐CL) using a series of hydrogen phosphonates (H‐phosphonates) as initiators was investigated. The ROIP occurred by a coordination‐insertion mechanism containing two steps. First, the carbonyl carbon was attacked by the phosphorus atom of the H‐phosphonate tautomerization (a phosphine‐like structure) and the acyl‐oxygen bond was broken. An intermediate was formed by the coordination of the former carbonyl carbon and acyl‐oxygen of ε‐CL to phosphorus atom. Then the phosphorus‐alkoxide of H‐phosphonate was cleavaged to form acyl‐alkoxide bond. Poly(ε‐caprolactone) (PCL)‐inserted H‐phosphonates (PCL‐HPs), which was not only the product of the occurred ROIP but also the initiator for the next ROIP, were produced. After 60 min of microwave irradiation (510 W), PCL with a number‐average molar mass of 7800 g/mol and monomer conversion over 92% was obtained. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6214–6222, 2009  相似文献   

19.
Per‐2,3‐acetyl‐β‐cyclodextrin with seven primary hydroxyl groups was synthesized by selective modification and used as multifunctional initiator for the ring‐opening polymerization of ε‐caprolactone (CL). Well‐defined β‐cyclodextrin‐centered seven‐arm star poly(ε‐caprolactone)s (CDSPCLs) with narrow molecular weight distributions (≤1.15) have been successfully prepared in the presence of Sn(Oct)2 at 120 °C. The molecular weight of CDSPCLs was characterized by end group 1H NMR analyses and size‐exclusion chromatography (SEC), which could be well controlled by the molar ratio of the monomer to the initiator. Furthermore, amphiphilic seven‐arm star poly(ε‐caprolactone‐b‐ethylene glycol)s (CDSPCL‐b‐PEGs) were synthesized by the coupling reaction of CDSPCLs with carboxyl‐terminated mPEGs. 1H NMR and SEC analyses confirmed the expected star block structures. Differential scanning calorimetry analyses suggested that the melting temperature (Tm), the crystallization temperature (Tc), and the crystallinity degree (Xc) of CDSPCLs all increased with the increasing of the molecular weight, and were lower than that of the linear poly(ε‐caprolactone). As for CDSPCL‐b‐PEGs, the Tc and Tm of the PCL blocks were significantly influenced by the PEG segments in the copolymers. Moreover, these amphiphilic star block copolymers could self‐assemble into spherical micelles with the particle size ranging from 10 to 40 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6455–6465, 2008  相似文献   

20.
Monofunctional polylactones were prepared by Bu2Sn(OMe)2‐initiated ring‐opening polymerization of ε‐caprolactone (εCL) followed by acylation with bromoacetylbromide. Telechelic polylactones and polylactides were prepared via ring‐expansion polymerization with 2,2‐dibutyl‐2‐stanna‐1,3‐dioxepane (DSDOP) or 2,2‐dibutyl‐2‐stanna‐pentaoxacyclotridecane (Bu2SnTEG) as cyclic initiator. In situ combination of the polymerization with condensation by means of bromoacetylbromide yielded polylactones having bromoacetate endgroups. These endgroups were subjected to nucleophilic substitution with 3‐mercaptopropyl trimethoxysilane (3‐MPTMS). Analogous experiments were conducted with dl‐lactide. The telechelic trimethoxysilyl‐endcapped polylactones were characterized by viscosity, 1H and 13C NMR‐spectroscopy, and MALDI‐TOF mass spectrometry. The mass spectra revealed small amounts of cyclic oligolactones as byproducts in all samples. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3667–3674, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号